A299627 Decimal expansion of e^(2*W(3)) = 9/(W(3))^2, where W is the Lambert W function (or PowerLog); see Comments.
8, 1, 6, 4, 6, 8, 2, 0, 8, 9, 7, 1, 2, 8, 4, 0, 5, 9, 1, 0, 9, 3, 8, 8, 7, 3, 7, 1, 1, 5, 6, 5, 4, 2, 2, 8, 7, 6, 6, 4, 4, 9, 4, 1, 9, 9, 6, 0, 4, 6, 7, 3, 7, 3, 4, 7, 7, 1, 0, 8, 1, 6, 3, 2, 1, 5, 6, 7, 1, 7, 8, 1, 2, 3, 1, 1, 7, 7, 9, 2, 3, 3, 8, 4, 3, 3
Offset: 1
Examples
e^(2*W(3)) = 8.1646820897128405910938873711...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Lambert W-Function
Programs
-
Mathematica
w[x_] := ProductLog[x]; x = 3; y = 3; N[E^(w[x] + w[y]), 130] (* A299627 *) RealDigits[(3/LambertW[3])^2, 10, 100][[1]] (* G. C. Greubel, Mar 06 2018 *)
-
PARI
(3/lambertw(3))^2 \\ G. C. Greubel, Mar 06 2018
Comments