cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299645 Numbers of the form m*(8*m + 5), where m is an integer.

Original entry on oeis.org

0, 3, 13, 22, 42, 57, 87, 108, 148, 175, 225, 258, 318, 357, 427, 472, 552, 603, 693, 750, 850, 913, 1023, 1092, 1212, 1287, 1417, 1498, 1638, 1725, 1875, 1968, 2128, 2227, 2397, 2502, 2682, 2793, 2983, 3100, 3300, 3423, 3633, 3762, 3982, 4117, 4347, 4488, 4728, 4875
Offset: 1

Views

Author

Bruno Berselli, Feb 26 2018

Keywords

Comments

Equivalently, numbers k such that 32*k + 25 is a square. This means that 4*a(n) + 3 is a triangular number.
Interleaving of A139277 and A139272 (without 0).

Crossrefs

Subsequence of A011861, A047222.
Cf. numbers of the form m*(8*m + h): A154260 (h=1), A014494 (h=2), A274681 (h=3), A046092 (h=4), this sequence (h=5), 2*A074377 (h=6), A274979 (h=7).

Programs

  • GAP
    List([1..50], n -> (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4);
    
  • Julia
    [div((8n*(n-1)-(2n-1)*(-1)^n-1), 4) for n in 1:50] # Peter Luschny, Feb 27 2018
  • Magma
    [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4: n in [1..50]];
    
  • Maple
    seq((exp(I*Pi*x)*(1-2*x)+8*(x-1)*x-1)/4, x=1..50); # Peter Luschny, Feb 27 2018
  • Mathematica
    Table[(8 n (n - 1) - (2 n - 1) (-1)^n - 1)/4, {n, 1, 50}]
  • Maxima
    makelist((8*n*(n-1)-(2*n-1)*(-1)^n-1)/4, n, 1, 50);
    
  • PARI
    vector(50, n, nn; (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4)
    
  • PARI
    concat(0, Vec(x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Feb 27 2018
    
  • Python
    [(8*n*(n-1)-(2*n-1)*(-1)**n-1)/4 for n in range(1, 60)]
    
  • Python
    def A299645(n): return (n>>1)*((n<<2)+(1 if n&1 else -5)) # Chai Wah Wu, Mar 11 2025
    
  • Sage
    [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4 for n in (1..50)]
    

Formula

O.g.f.: x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2).
E.g.f.: (1 + 2*x - (1 - 8*x^2)*exp(2*x))*exp(-x)/4.
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (8*n*(n - 1) - (2*n - 1)*(-1)^n - 1)/4 = (2*n + (-1)^n - 1)*(4*n - 3*(-1)^n - 2)/4. Therefore, 3 and 13 are the only prime numbers in this sequence.
a(n) + a(n+1) = 4*n^2 for even n, otherwise a(n) + a(n+1) = 4*n^2 - 1.
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=2} 1/a(n) = 8/25 + (sqrt(2)-1)*Pi/5.
Sum_{n>=2} (-1)^n/a(n) = 8*log(2)/5 - sqrt(2)*log(2*sqrt(2)+3)/5 - 8/25. (End)
a(n) = (n-1)*(4*n+1)/2 if n is odd and a(n) = n*(4*n-5)/2 if n is even. - Chai Wah Wu, Mar 11 2025