cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299646 a(n) = Sum_{k = n..2*n+1} k^2.

Original entry on oeis.org

1, 14, 54, 135, 271, 476, 764, 1149, 1645, 2266, 3026, 3939, 5019, 6280, 7736, 9401, 11289, 13414, 15790, 18431, 21351, 24564, 28084, 31925, 36101, 40626, 45514, 50779, 56435, 62496, 68976, 75889, 83249, 91070, 99366, 108151, 117439, 127244, 137580, 148461, 159901
Offset: 0

Views

Author

Bruno Berselli, Feb 20 2018

Keywords

Comments

Inverse binomial transform is 1, 13, 27, 14, 0, 0, 0, ... (0 continued).

Crossrefs

Subsequence of A008854, A047388, A174070 (after 1).
Cf. A050409: Sum_{k = n..2*n} k^2; A050410: Sum_{k = n..2*n-1} k^2.

Programs

  • GAP
    List([0..50], n -> (n+2)*(14*n^2+11*n+3)/6);
    
  • Magma
    [(n+2)*(14*n^2+11*n+3)/6: n in [0..50]];
    
  • Maple
    seq((n + 2)*(14*n^2 + 11*n + 3)/6, n=0..50); # Peter Luschny, Feb 21 2018
  • Mathematica
    Table[(n + 2) (14 n^2 + 11 n + 3)/6, {n, 0, 50}]
    (* Second program: *)
    LinearRecurrence[{4, -6, 4, -1}, {1, 14, 54, 135}, 41] (* Jean-François Alcover, Feb 21 2018 *)
  • Maxima
    makelist((n+2)*(14*n^2+11*n+3)/6, n, 0, 50);
    
  • PARI
    a(n)=(n+2)*(14*n^2+11*n+3)/6 \\ Charles R Greathouse IV, Feb 21 2018
    
  • PARI
    Vec((1 + 10*x + 4*x^2 - x^3)/(1 - x)^4 + O(x^60)) \\ Colin Barker, Feb 22 2018
  • Sage
    [(n+2)*(14*n^2+11*n+3)/6 for n in (0..50)]
    

Formula

O.g.f.: (1 + 10*x + 4*x^2 - x^3)/(1 - x)^4.
E.g.f.: (6 + 78*x + 81*x^2 + 14*x^3)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = (n + 2)*(14*n^2 + 11*n + 3)/6. Therefore:
a(6*k + r) = 504*k^3 + 18*(14*r + 13)*k^2 + (42*r^2 + 78*r + 25)*k + a(r), with 0 <= r <= 5. Example: for r=5, a(6*k + 5) = (6*k + 7)*(84*k^2 + 151*k + 68).