cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299773 a(n) is the index of the partition that contains the divisors of n in the list of colexicographically ordered partitions of the sum of the divisors of n.

Original entry on oeis.org

1, 2, 3, 9, 7, 48, 15, 119, 72, 269, 56, 2740, 101, 1163, 1208, 5218, 297, 24319, 490, 42150, 6669, 14098, 1255, 792335, 5564, 42501, 30585, 432413, 4565, 4513067, 6842, 1251217, 122818, 317297, 124253, 54782479, 21637, 802541, 445414, 48590725, 44583
Offset: 1

Views

Author

Omar E. Pol, Mar 25 2018

Keywords

Comments

If n is a noncomposite number (that is, 1 or prime), then a(n) = A000041(n).
For n >= 3, p(sigma(n-2)) < a(n) <= p(sigma(n-1)), where p(n) = A000041(n) and sigma(n) = A000203(n).

Examples

			For n = 4 the sum of the divisors of 4 is 1 + 2 + 4 = 7. Then we have that, in list of colexicographically ordered partitions of 7, the divisors of 4 are in the 9th partition, so a(4) = 9 (see below):
------------------------------------------------------
   k        Diagram        Partitions of 7
------------------------------------------------------
         _ _ _ _ _ _ _
   1    |_| | | | | | |    [1, 1, 1, 1, 1, 1, 1]
   2    |_ _| | | | | |    [2, 1, 1, 1, 1, 1]
   3    |_ _ _| | | | |    [3, 1, 1, 1, 1]
   4    |_ _|   | | | |    [2, 2, 1, 1, 1]
   5    |_ _ _ _| | | |    [4, 1, 1, 1]
   6    |_ _ _|   | | |    [3, 2, 1, 1]
   7    |_ _ _ _ _| | |    [5, 1, 1]
   8    |_ _|   |   | |    [2, 2, 2, 1]
   9    |_ _ _ _|   | |    [4, 2, 1]       <---- Divisors of 4
  10    |_ _ _|     | |    [3, 3, 1]
  11    |_ _ _ _ _ _| |    [6, 1]
  12    |_ _ _|   |   |    [3, 2, 2]
  13    |_ _ _ _ _|   |    [5, 2]
  14    |_ _ _ _|     |    [4, 3]
  15    |_ _ _ _ _ _ _|    [7]
.
		

Crossrefs

Programs

  • Mathematica
    b[n_, k_] := b[n, k] = If[k < 1 || k > n, 0, If[n == k, 1, b[n, k + 1] + b[n - k, k]]];
    PartIndex[v_] := Module[{s = 1, t = 0}, For[i = Length[v], i >= 1, i--, t += v[[i]]; s += b[t, If[i == 1, 1, v[[i - 1]]]] - b[t, v[[i]]]]; s];
    a[n_] := PartIndex[Divisors[n]];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 27 2019, after Andrew Howroyd *)
  • PARI
    a(n)={my(d=divisors(n)); vecsearch(vecsort(partitions(vecsum(d))), d)} \\ Andrew Howroyd, Jul 15 2018
    
  • PARI
    \\ here b(n,k) is A026807.
    b(n,k)=polcoeff(1/prod(i=k, n, 1-x^i + O(x*x^n)), n)
    PartIndex(v)={my(s=1,t=0); forstep(i=#v, 1, -1, t+=v[i]; s+=b(t, if(i==1, 1, v[i-1])) - b(t, v[i])); s}
    a(n)=PartIndex(divisors(n)); \\ Andrew Howroyd, Jul 15 2018

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jul 15 2018