cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299789 Number T(n,k) of permutations p of [n] such that min_{j=1..n} |p(j)-j| = k; triangle T(n,k), n >= 0, 0 <= k <= floor(n/2), read by rows.

Original entry on oeis.org

0, 1, 1, 1, 4, 2, 15, 8, 1, 76, 40, 4, 455, 236, 28, 1, 3186, 1648, 198, 8, 25487, 13125, 1596, 111, 1, 229384, 117794, 14534, 1152, 16, 2293839, 1175224, 146372, 12929, 435, 1, 25232230, 12903874, 1621282, 152430, 6952, 32, 302786759, 154615096, 19563257, 1922364, 112416, 1707, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 21 2019

Keywords

Examples

			T(4,0) = 15: 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2314, 2431, 3124, 3214, 3241, 4132, 4213, 4231.
T(4,1) = 8: 2143, 2341, 2413, 3142, 3421, 4123, 4312, 4321.
T(4,2) = 1: 3412.
T(5,2) = 4: 34512, 34521, 45123, 54123.
T(6,3) = 1: 456123.
T(7,3) = 8: 4567123, 4567132, 4567213, 4567231, 5671234, 5761234, 6571234, 7561234.
T(8,4) = 1: 56781234.
T(9,4) = 16: 567891234, 567891243, 567891324, 567891342, 567892134, 567892143, 567892314, 567892341, 678912345, 679812345, 687912345, 697812345, 768912345, 769812345, 867912345, 967812345.
Triangle T(n,k) begins:
          0;
          1;
          1,         1;
          4,         2;
         15,         8,        1;
         76,        40,        4;
        455,       236,       28,       1;
       3186,      1648,      198,       8;
      25487,     13125,     1596,     111,      1;
     229384,    117794,    14534,    1152,     16;
    2293839,   1175224,   146372,   12929,    435,    1;
   25232230,  12903874,  1621282,  152430,   6952,   32;
  302786759, 154615096, 19563257, 1922364, 112416, 1707, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A002467, A296050.
Row sums give A000142 (for n>0).
T(2n,n) gives A057427.
T(2n+1,n) gives A000079.
T(2n+2,n) gives A306545.

Programs

  • Maple
    b:= proc(s) option remember; (n-> `if`(n=1, x^(s[1]-1),
          add((p-> add(coeff(p, x, i)*x^min(i, abs(n-j)),
          i=0..degree(p)))(b(s minus {j})), j=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b({$1..n})):
    seq(T(n), n=0..14);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 0, LinearAlgebra[
          Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)>=k, 1, 0))))
        end:
    T:= (n, k)-> A(n, k)-A(n, k+1):
    seq(seq(T(n, k), k=0..n/2), n=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 0, Permanent[Table[If[Abs[i-j] >= k, 1, 0], {i, 1, n}, {j, 1, n}]]];
    T[n_, k_] := A[n, k] - A[n, k+1];
    Table[T[n, k], {n, 0, 14}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, May 01 2019, from 2nd Maple program *)

Formula

T(n,k) = A306543(n,k) - A306543(n,k+1) for n > 0.
Sum_{k=1..floor(n/2)} k * T(n,k) = A129118(n).
Sum_{k=1..floor(n/2)} T(n,k) = A000166(n).
Sum_{k=2..floor(n/2)} T(n,k) = A001883(n).
Sum_{k=3..floor(n/2)} T(n,k) = A075851(n).
Sum_{k=4..floor(n/2)} T(n,k) = A075852(n).