cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299921 Squares that differ from a triangular number by 1.

Original entry on oeis.org

0, 1, 4, 9, 16, 121, 324, 529, 4096, 11025, 17956, 139129, 374544, 609961, 4726276, 12723489, 20720704, 160554241, 432224100, 703893961, 5454117904, 14682895929, 23911673956, 185279454481, 498786237504, 812293020529, 6294047334436, 16944049179225, 27594051024016
Offset: 1

Views

Author

N. J. A. Sloane, Mar 17 2018

Keywords

Comments

Squares k such that 8*k-7 or 8*k+9 is a square. - Robert Israel, Mar 18 2018

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n+9) = 35*a(n+6) - 35*a(n+3) + a(n), seq(a(i)=[0, 1, 4, 9, 16, 121, 324, 529, 4096][i],i=1..9)}, a(n), remember):
    map(f, [$1..50]); # Robert Israel, Mar 18 2018
  • Mathematica
    LinearRecurrence[{0, 0, 35, 0, 0, -35, 0, 0, 1}, {0, 1, 4, 9, 16, 121, 324, 529, 4096}, 50] (* Jean-François Alcover, Sep 17 2022 *)
  • PARI
    isok(n) = issquare(n) && (ispolygonal(n+1, 3) || ispolygonal(n-1, 3)); \\ Michel Marcus, Mar 17 2018

Formula

From Robert Israel, Mar 18 2018: (Start)
G.f.: x^2*(1+4*x+9*x^2-19*x^3-19*x^4+9*x^5+4*x^6+x^7)/(1-35*x^3+35*x^6-x^9).
a(n) = 35*a(n-3) - 35*a(n-6) + a(n-9). (End)

Extensions

More terms from Altug Alkan, Mar 17 2018