A299925 Number of chains in Young's lattice from () to the partition with Heinz number n.
1, 1, 2, 2, 4, 6, 8, 4, 12, 16, 16, 16, 32, 40, 44, 8, 64, 44, 128, 52, 136, 96, 256, 40, 88, 224, 88, 152, 512, 204, 1024, 16, 384, 512, 360, 136, 2048, 1152, 1024, 152, 4096, 744, 8192, 416, 496, 2560, 16384, 96, 720, 496, 2624, 1088, 32768, 360, 1216, 504
Offset: 1
Keywords
Examples
The a(9) = 12 tableaux: 1 3 1 2 2 4 3 4 . 1 3 1 2 1 2 1 2 1 1 2 3 3 3 2 3 1 3 2 3 . 1 2 1 2 1 1 1 1 2 2 1 2 2 2 1 2 . 1 1 1 1 The a(9) = 12 chains of Heinz numbers: 1<9, 1<2<9, 1<3<9, 1<4<9, 1<6<9, 1<2<3<9, 1<2<4<9, 1<2<6<9, 1<3<6<9, 1<4<6<9, 1<2<3<6<9, 1<2<4<6<9.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; hncQ[a_,b_]:=And@@GreaterEqual@@@Transpose[PadRight[{Reverse[primeMS[b]],Reverse[primeMS[a]]}]]; chns[x_,y_]:=chns[x,y]=Join[{{x,y}},Join@@Function[c,Append[#,y]&/@chns[x,c]]/@Select[Range[x+1,y-1],hncQ[x,#]&&hncQ[#,y]&]]; Table[Length[chns[1,n]],{n,30}]
Comments