cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299953 Coefficients in expansion of (E_4^3/E_6^2)^(1/12).

Original entry on oeis.org

1, 144, 27648, 12540096, 4971036672, 2263040955360, 1031452724072448, 487587831652591488, 233267529030162186240, 113311495859272029716688, 55566291037565862262794240, 27487705978359515260636550208, 13689979692617556597746930024448
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2018

Keywords

Crossrefs

(E_4^3/E_6^2)^(k/288): A289365 (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), A299698 (k=6), A299943 (k=8), A299949 (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), this sequence (k=24), A299993 (k=32), A299994 (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), A300055 (k=144), A289209 (k=288).
Cf. A004009 (E_4), A013973 (E_6), A299858.

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E4[x]^3/E6[x]^2)^(1/12) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)

Formula

Convolution inverse of A299858.
a(n) ~ 2^(2/3) * sqrt(Pi) * exp(2*Pi*n) / (3^(1/12) * Gamma(1/6) * Gamma(1/4)^(2/3) * n^(5/6)). - Vaclav Kotesovec, Mar 04 2018
a(n) * A299858(n) ~ -exp(4*Pi*n) / (12*Pi*n^2). - Vaclav Kotesovec, Mar 04 2018