A299962 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the k-th positive number whose Collatz sequence contains n.
1, 2, 2, 3, 3, 3, 3, 6, 4, 4, 3, 4, 12, 5, 5, 6, 5, 5, 24, 6, 6, 7, 12, 6, 6, 48, 7, 7, 3, 9, 24, 7, 7, 96, 8, 8, 9, 5, 14, 48, 9, 8, 192, 9, 9, 3, 18, 6, 18, 96, 10, 9, 384, 10, 10, 7, 6, 36, 7, 28, 192, 11, 10, 768, 11, 11, 12, 9, 7, 72, 8, 36, 384, 12, 11
Offset: 1
Examples
Array T(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 ---+--------------------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 --> A000027 ? 2| 2 3 4 5 6 7 8 9 10 11 3| 3 6 12 24 48 96 192 384 768 1536 --> A007283 4| 3 4 5 6 7 8 9 10 11 12 5| 3 5 6 7 9 10 11 12 13 14 6| 6 12 24 48 96 192 384 768 1536 3072 --> A091629 7| 7 9 14 18 28 36 37 43 49 56 8| 3 5 6 7 8 9 10 11 12 13 9| 9 18 36 72 144 288 576 1152 2304 4608 10| 3 6 7 9 10 11 12 13 14 15
Links
Programs
-
PARI
See Links section.
Formula
T(n, 1) = A070167(n) for any n > 0.
T(3*n, k) = 3*n * 2^(k-1) for any n > 0 and k > 0.
If the Collatz conjecture is true, then:
- T(1, k) = k for any k > 0,
- T(2, k) = k+1 for any k > 0.
Comments