cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299962 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the k-th positive number whose Collatz sequence contains n.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 6, 4, 4, 3, 4, 12, 5, 5, 6, 5, 5, 24, 6, 6, 7, 12, 6, 6, 48, 7, 7, 3, 9, 24, 7, 7, 96, 8, 8, 9, 5, 14, 48, 9, 8, 192, 9, 9, 3, 18, 6, 18, 96, 10, 9, 384, 10, 10, 7, 6, 36, 7, 28, 192, 11, 10, 768, 11, 11, 12, 9, 7, 72, 8, 36, 384, 12, 11
Offset: 1

Views

Author

Rémy Sigrist, Feb 22 2018

Keywords

Comments

The n-th row corresponds to indices of rows in A070165 containing n.

Examples

			Array T(n, k) begins:
  n\k|  1     2     3     4     5     6     7     8     9    10
  ---+---------------------------------------------------------
    1|  1     2     3     4     5     6     7     8     9    10  -->  A000027 ?
    2|  2     3     4     5     6     7     8     9    10    11
    3|  3     6    12    24    48    96   192   384   768  1536  -->  A007283
    4|  3     4     5     6     7     8     9    10    11    12
    5|  3     5     6     7     9    10    11    12    13    14
    6|  6    12    24    48    96   192   384   768  1536  3072  -->  A091629
    7|  7     9    14    18    28    36    37    43    49    56
    8|  3     5     6     7     8     9    10    11    12    13
    9|  9    18    36    72   144   288   576  1152  2304  4608
   10|  3     6     7     9    10    11    12    13    14    15
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

T(n, 1) = A070167(n) for any n > 0.
T(3*n, k) = 3*n * 2^(k-1) for any n > 0 and k > 0.
If the Collatz conjecture is true, then:
- T(1, k) = k for any k > 0,
- T(2, k) = k+1 for any k > 0.