A299964 Integers represented in more than one way by a cyclotomic binary form f(x,y) where x and y are prime numbers and 0 < y < x.
19, 39, 97, 147, 247, 259, 327, 399, 410, 427, 481, 650, 777, 890, 903, 1010, 1027, 1130, 1209, 1267, 1443, 1490, 1533, 1677, 1730, 1767, 1802, 1813, 1898, 1911, 1970, 2037, 2119, 2210, 2330, 2378, 2667, 2793, 2847, 3050, 3170, 3297, 3367, 3477, 3530, 3603
Offset: 1
Keywords
Links
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Programs
-
Julia
function countA299928(n) R, z = PolynomialRing(ZZ, "z") K = Int(floor(5.383*log(n)^1.161)) # Bounds from M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt N = QQ(n); count = 0 P(u) = (p for p in u:M if isprime(ZZ(p))) for k in 3:K e = Int(eulerphi(ZZ(k))) c = cyclotomic(k, z) for y in P(2), x in P(y+1) if N == y^e*subst(c, QQ(x, y)) count += 1 end end end return count end A299964list(upto) = [n for n in 1:upto if countA299928(n) > 1] println(A299964list(3640))
Comments