A299966 Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions non-singleton skew-partitions.
1, 0, 1, 1, 1, 1, 2, 1, 3, 3, 3, 3, 5, 5, 5, 2, 8, 5, 13, 6, 13, 10, 21, 5, 11, 18, 11, 14, 34, 15, 55, 3, 26, 33, 23, 13, 89, 59, 54, 14, 144, 38, 233, 28, 31, 105, 377, 10, 47, 31, 106, 57, 610, 23, 60, 32, 206, 185, 987, 38, 1597, 324, 91, 5, 132, 93, 2584, 111
Offset: 1
Keywords
Examples
The a(25) = 11 tableaux: 1 2 3 1 2 2 1 1 3 1 1 2 1 2 3 1 3 3 2 2 3 2 3 3 . 1 2 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 1 1 2 2 2 2 1 2 2 . 1 1 1 1 1 1
References
- Bruce E. Sagan, The Symmetric Group, Springer-Verlag New York, 2001.
Links
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; undptns[y_]:=DeleteCases[Select[Tuples[Range[0,#]&/@y],OrderedQ[#,GreaterEqual]&],0,{2}]; eh[y_]:=If[Total[y]=!=1,1,0]+Sum[eh[c],{c,Select[undptns[y],Total[#]>1&&Total[y]-Total[#]>1&]}]; Table[eh[Reverse[primeMS[n]]],{n,60}]
Comments