cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300001 Side length of the smallest equilateral triangle that can be dissected into n equilateral triangles with integer sides, or 0 if no such triangle exists.

Original entry on oeis.org

1, 0, 0, 2, 0, 3, 4, 4, 3, 4, 5, 6, 4, 5, 6, 4, 5, 6, 5, 6, 6, 5, 7, 6, 5, 7, 6, 6, 7, 6, 7, 7, 6, 7, 7, 6, 7, 7, 8, 7, 7, 8, 7, 8, 8, 7, 8, 8, 7, 8, 9, 8, 8, 9, 8, 8, 9, 8, 9, 9, 8, 9, 9, 8, 9, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 10, 10, 9, 10, 10, 9, 10, 10, 10, 10, 10, 11, 10, 10, 11, 10, 10, 11, 10, 11, 11, 10, 11, 11, 10
Offset: 1

Views

Author

Hugo Pfoertner, Feb 20 2018

Keywords

Comments

No solutions exist for n = 2, 3 and 5.
a(n) = A290820(n) for n <= 8. It is conjectured that a(n) < A290820(n) for all n > 12.
The seven numbers mentioned by Peter Munn in the Formula section [1, 2, 4, 5, 7, 10, 13] coincide with the seven terms of A123120. - M. F. Hasler and Omar E. Pol, Feb 23 2018

Examples

			            a(9)=3               a(10)=4                a(11)=5
              *                     *                      *
             / \                   / \                    / \
            *---*                 *---*                  +   +
           / \ / \               / \ / \                /     \
          *---*---*             *---*---*              +       +
         / \ / \ / \           / \ / \ / \            /         \
        *---*---*---*         +   *---*   +          *---+---+---*
                             /     \ /     \        / \ / \     / \
                            *---+---*---+---*      *---*---*   +   +
                                                  / \ / \ / \ /     \
                                                 *---*---*---*---+---*
.
           a(12)=6                a(13)=4                a(14)=5
              *                      *                      *
             / \                    / \                    / \
            *---*                  *---*                  +   +
           / \ / \                / \ / \                /     \
          *---*---*              *---*---*              +       +
         / \ / \ / \            / \ / \ / \            /         \
        *---*---*---*          *---*   *---*          *---+---+---*
       / \         / \        / \ /     \ / \        / \ / \ / \ / \
      *   +       +   +      *---*---*---*---*      *---*---*---*   +
     /     \     /     \                           / \ / \ / \ /     \
    +       +   +       +                         *---*---*---*---+---*
   /         \ /         \
  *---+---+---*---+---+---*
.
           a(15)=6                 a(16)=4                a(17)=5
              *                       *                      *
             / \                     / \                    / \
            +   +                   *---*                  +   +
           /     \                 / \ / \                /     \
          +       +               *---*---*              +       +
         /         \             / \ / \ / \            /         \
        +           +           *---*---*---*          *---*---*---*
       /             \         / \ / \ / \ / \        / \ / \ / \ / \
      *---*---*---*---*       *---*---*---*---*      *---*---*---*---*
     / \     / \     / \                            / \ / \ / \ / \ / \
    *---*   *---*   *---*                          *---*---*---*---*---*
   / \ / \ / \ / \ / \ / \
  *---*---*---*---*---*---*
.
           a(18)=6                 a(19)=5                 a(20)=6
              *                       *                       *
             / \                     / \                     / \
            +   +                   +   +                   *---*
           /     \                 /     \                 / \ / \
          +       +               *---*---*               *---*---*
         /         \             / \     / \             / \ / \ / \
        +           +           *---*   *---*           *---*---*---*
       /             \         / \ / \ / \ / \         / \ / \ / \ / \
      *---*---*---*---*       *---*---*---*---*       +   *---*---*   +
     / \ / \ / \ / \ / \     / \ / \ / \ / \ / \     /     \ / \ /     \
    *---*---*   *---*---*   *---*---*---*---*---*   +       *---*       +
   / \ / \ /     \ / \ / \                         /         \ /         \
  *---*---*---+---*---*---*                       *---+---+---*---+---+---*
		

Crossrefs

Formula

a(n^2) = n for all n>=1, a(n^2-3) = n for all n>=3. - Corrected by Peter Munn, Feb 24 2018
For n > 23, if A068527(n) = 1, 2, 4, 5, 7, 10 or 13 then a(n) = ceiling(sqrt(n)) + 1 else a(n) = ceiling(sqrt(n)). - Peter Munn, Feb 23 2018

Extensions

a(21)-a(100) from Peter Munn, Feb 24 2018