A300009 Addition table for the 2 X 2 sandpile group: T(m,n) = A300006(m) (+) A300006(n), for 1 <= m <= n <= 192. (Upper right part of the symmetric matrix.)
330, 331, 332, 233, 1301, 1203, 1301, 1302, 1310, 1311, 1302, 1303, 1311, 1312, 1313, 1310, 1311, 1213, 1320, 1321, 1223, 1311, 1312, 1320, 1321, 1322, 1330, 1331, 1312, 1313, 1321, 1322, 1323, 1331, 1332, 1333, 323, 1031, 332, 333, 2002, 1303, 2011, 2012, 1023, 1031, 1032, 333, 2002, 2003, 2011, 2012, 2013, 1130
Offset: 1
Examples
T(1,1) = 0330 represents [0,1;1,2] (+) [0,1;1,2] = [0,3;3,0] (result after "toppling" the plain addition of the first element of A300006 to itself, 0112 + 0112 = 0224). Given that the operation is abelian, the sequence lists only the upper-right (or equivalently, lower left) part of the table: (For reference we mark \abcd\ the diagonal element which is the last one listed of the respective row / column.) A \ B: 0112 0113 0121 0122 0123 0131 0132 0133 0211 ... 0112 :\0330\ 0331 0233 1301 1302 1310 1311 1312 0323 ... 0113 : 0331 \0332\ 1301 1302 1310 1311 1312 1313 1031 ... 0121 : 0233 1301 \1203\ 1310 1311 1213 1320 1321 0332 ... 0122 : 1301 1302 1310 \1311\ 1312 1320 1321 1322 0333 ... 0123 : 1302 1303 1311 1312 \1313\ 1321 1322 1323 2002 ... 0131 : 1310 1311 1213 1320 1321 \1223\ 1330 1331 2011 ... 0132 : 1311 1312 1320 1321 1322 1330 \1331\ 1332 2012 ... 0133 : 1312 1313 1321 1322 1323 1331 1332 \1333\ 2012 ... 0211 : 0323 1031 0332 0333 2002 1303 2011 2012 \1023\ ... ...
Links
- M. F. Hasler, Table of n, a(n) for n = 1..18528. (Complete sequence: row / column 1..192, flattened.)
Crossrefs
For links, references etc. see the main entry A300006.
Comments