A300063 Heinz numbers of integer partitions of odd numbers.
2, 5, 6, 8, 11, 14, 15, 17, 18, 20, 23, 24, 26, 31, 32, 33, 35, 38, 41, 42, 44, 45, 47, 50, 51, 54, 56, 58, 59, 60, 65, 67, 68, 69, 72, 73, 74, 77, 78, 80, 83, 86, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 109, 110, 114, 119, 122, 123, 124, 125, 126, 127
Offset: 1
Keywords
Examples
15 is the Heinz number of (3,2), which has odd weight, so 15 belongs to the sequence. Sequence of odd-weight partitions begins: (1) (3) (2,1) (1,1,1) (5) (4,1) (3,2) (7) (2,2,1) (3,1,1) (9) (2,1,1,1) (6,1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, 0, a(n-1)) while add(numtheory[pi] (i[1])*i[2], i=ifactors(k)[2])::even do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, May 22 2018
-
Mathematica
Select[Range[200],OddQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]&]
Comments