A300064 Numbers k such that there are exactly phi(phi(k)) residues modulo k of the maximum order.
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31, 32, 34, 35, 37, 38, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 64, 67, 68, 70, 71, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Peter J. Cameron and D. A. Preece, Primitive lambda-roots, 2014.
- T. W. Müller and J.-C. Schlage-Puchta, On the number of primitive lambda-roots, Acta Arithmetica, Vol. 115 (2004), pp. 217-223.
Crossrefs
Programs
-
Mathematica
q[n_] := Count[(t = Table[MultiplicativeOrder[k, n], {k, Select[Range[n], CoprimeQ[n, #] &]}]), Max[t]] == EulerPhi[EulerPhi[n]]; Select[Range[100], q] (* Amiram Eldar, Oct 12 2021 *)
-
PARI
isA300064(n) = my(v=znstar(n)[2], l=#v); if(l<2, return(1), my(U=v[1], L=v[2], d=factor(U), w=omega(U)); for(i=1, w, if(valuation(L,d[i,1]) == d[i,2], return(0))); return(1)) \\ Jianing Song, Oct 20 2021
Comments