A300065 Numbers k such that the number of residues modulo k of the maximum order is different from phi(phi(k)).
8, 12, 21, 24, 28, 33, 36, 42, 44, 56, 57, 63, 65, 66, 69, 72, 76, 77, 80, 84, 88, 91, 92, 93, 99, 108, 114, 117, 124, 126, 129, 130, 132, 133, 138, 141, 145, 147, 152, 154, 161, 168, 171, 172, 177, 182, 184, 185, 186, 188, 189, 195, 196, 198, 201, 207, 208, 209, 213, 216, 217, 228, 231, 234, 236, 237, 240, 248, 249, 252, 253, 258, 260, 264, 265, 266, 268, 273, 275, 276, 279, 282
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Peter J. Cameron and D. A. Preece, Primitive lambda-roots, 2014.
- T. W. Müller and J.-C. Schlage-Puchta, On the number of primitive lambda-roots, Acta Arithmetica, Vol. 115 (2004), pp. 217-223.
Crossrefs
Programs
-
Mathematica
q[n_] := Count[(t = Table[MultiplicativeOrder[k, n], {k, Select[Range[n], CoprimeQ[n, #] &]}]), Max[t]] != EulerPhi[EulerPhi[n]]; Select[Range[300], q] (* Amiram Eldar, Oct 12 2021 *)
Comments