A300070 Decimal expansion of the positive member y of a triple (x, y, z) solving a certain historical system of three equations.
3, 2, 6, 9, 9, 2, 8, 3, 0, 3, 8, 2, 0, 8, 7, 0, 5, 8, 0, 2, 3, 9, 1, 7, 8, 1, 3, 6, 8, 5, 9, 2, 6, 6, 8, 6, 9, 9, 7, 6, 4, 9, 4, 3, 1, 0, 1, 7, 1, 6, 6, 6, 9, 3, 2, 4, 0, 5, 9, 5, 8, 7, 9, 9, 1, 7, 0, 1, 8, 5, 5, 6, 3, 5, 8, 5, 8, 2, 7, 8, 1, 0, 6, 1, 5, 8, 8, 5, 0, 5, 3, 9, 9, 5, 3, 4, 5, 6, 0, 5
Offset: 1
Examples
y = 3.26992830382087058023917813685926686997649431017166693240595879917018... y/5 = 0.65398566076417411604783562737185337399529886203433338648119175983...
References
- Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 58-60.
Links
- I.C. Karpinski, The Algebra of Abu Kamil, Amer. Math. Month. XXI,2 (1914), 37-48.
- MacTutor History of Mathematics, Abu Kamil Shuja.
- Wikipedia, Abu Kamil.
Programs
-
Mathematica
RealDigits[5 (1 - GoldenRatio + Sqrt[GoldenRatio]), 10, 100][[1]] (* Bruno Berselli, Mar 02 2018 *)
Formula
y = 5*(1 - phi + sqrt(phi)), with the golden section phi = (1 + sqrt(5))/2 = A001622.
Comments