cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A300084 Number of nX3 0..1 arrays with every element equal to 0, 1, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

3, 4, 1, 4, 10, 6, 19, 41, 32, 106, 177, 204, 567, 854, 1301, 3067, 4579, 8193, 16931, 26544, 50620, 96460, 160794, 309917, 567494, 993732, 1895366, 3426279, 6187957, 11638394, 21056192, 38635839, 71892662, 130796451, 241549120, 446677807
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2018

Keywords

Comments

Column 3 of A300089.

Examples

			Some solutions for n=5
..0..0..1. .0..1..1. .0..0..0. .0..1..1. .0..0..0. .0..0..1. .0..1..0
..0..0..1. .0..1..1. .0..0..0. .0..1..1. .0..0..0. .0..0..1. .0..1..0
..0..0..0. .0..0..0. .0..0..0. .1..1..1. .0..0..0. .0..0..0. .0..0..0
..1..1..0. .1..0..0. .0..0..0. .0..1..1. .1..1..1. .0..0..1. .0..1..0
..1..1..0. .1..0..0. .0..0..0. .0..1..1. .1..1..1. .0..0..1. .0..1..0
		

Crossrefs

Cf. A300089.

Formula

Empirical: a(n) = 2*a(n-1) +a(n-2) +2*a(n-3) -10*a(n-4) +2*a(n-5) +2*a(n-6) +2*a(n-7) -3*a(n-8) -3*a(n-9) +12*a(n-10) -4*a(n-11) +17*a(n-12) -3*a(n-13) -5*a(n-14) +a(n-15) -12*a(n-16) -6*a(n-17) -2*a(n-18) -3*a(n-19) -a(n-20) for n>21

A300085 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 8, 4, 25, 50, 98, 359, 766, 1932, 5677, 12860, 34902, 92923, 224468, 609898, 1569799, 3969016, 10617506, 27213371, 70541934, 186417464, 481204483, 1261639106, 3316784004, 8641317351, 22770348996, 59873020940, 157234586213
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2018

Keywords

Comments

Column 4 of A300089.

Examples

			Some solutions for n=5
..0..1..0..0. .0..0..1..0. .0..1..0..1. .0..0..0..0. .0..0..0..0
..0..1..0..0. .0..0..1..0. .1..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..1..1. .0..0..0..1. .0..0..0..0. .0..0..0..0
..0..1..0..0. .0..0..1..0. .0..1..0..0. .1..1..1..1. .0..0..0..0
..0..1..0..0. .0..0..1..0. .1..0..0..1. .1..1..1..1. .0..0..0..0
		

Crossrefs

Cf. A300089.

Formula

Empirical: a(n) = 3*a(n-1) +a(n-2) +23*a(n-3) -77*a(n-4) +5*a(n-5) -303*a(n-6) +735*a(n-7) -169*a(n-8) +2494*a(n-9) -3571*a(n-10) +1775*a(n-11) -10599*a(n-12) +9687*a(n-13) -8801*a(n-14) +23592*a(n-15) -19900*a(n-16) +18698*a(n-17) -34363*a(n-18) +29869*a(n-19) -21710*a(n-20) +36339*a(n-21) -31007*a(n-22) +16036*a(n-23) -26673*a(n-24) +26280*a(n-25) -4804*a(n-26) +15200*a(n-27) -19964*a(n-28) -4002*a(n-29) -9745*a(n-30) +12193*a(n-31) +4104*a(n-32) +5170*a(n-33) -7137*a(n-34) -2131*a(n-35) -834*a(n-36) +4727*a(n-37) +2072*a(n-38) -544*a(n-39) -2800*a(n-40) -1833*a(n-41) +287*a(n-42) +1272*a(n-43) +1184*a(n-44) -38*a(n-45) -361*a(n-46) -569*a(n-47) -23*a(n-48) +69*a(n-49) +172*a(n-50) +27*a(n-51) -23*a(n-52) -34*a(n-53) -10*a(n-54) +5*a(n-55) +7*a(n-56) +a(n-57) -a(n-59) for n>61

A300086 Number of nX5 0..1 arrays with every element equal to 0, 1, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 32, 10, 50, 415, 533, 3089, 13808, 27523, 150838, 522496, 1454342, 6845127, 21980047, 73768036, 306066774, 995231232, 3620422152, 13873596424, 46932637572, 174895746882, 644353070290, 2261752653857, 8438806451089
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2018

Keywords

Comments

Column 5 of A300089.

Examples

			Some solutions for n=5
..0..0..0..0..1. .0..1..1..1..1. .0..0..1..1..0. .0..0..0..0..0
..1..1..0..1..0. .1..0..1..0..0. .0..0..1..1..0. .1..1..0..1..1
..0..0..0..0..0. .1..1..1..0..0. .0..0..1..1..1. .0..0..0..0..0
..0..0..0..1..0. .0..1..1..1..1. .1..1..1..0..1. .1..1..1..1..1
..0..0..0..1..0. .0..1..1..1..1. .1..1..1..0..1. .1..1..1..1..1
		

Crossrefs

Cf. A300089.

A300087 Number of nX6 0..1 arrays with every element equal to 0, 1, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

13, 32, 6, 98, 533, 1822, 13646, 64560, 292356, 1935206, 8977877, 47025964, 277252018, 1342509714, 7412660838, 41080319424, 209198027664, 1166155310631, 6311894489681, 33391174168101, 185469661266839, 1001589651401307
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2018

Keywords

Comments

Column 6 of A300089.

Examples

			Some solutions for n=5
..0..0..0..0..0..1. .0..0..0..1..1..0. .0..0..0..1..1..0. .0..0..1..1..1..0
..0..0..0..0..0..1. .0..0..0..1..1..0. .0..0..0..1..1..0. .0..0..1..1..1..0
..0..0..1..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0. .0..0..1..1..1..1
..0..0..0..0..1..0. .1..1..0..0..1..0. .0..0..0..0..1..0. .1..1..1..0..0..1
..0..0..0..0..1..0. .1..1..0..0..1..0. .0..0..0..0..1..0. .1..1..1..0..0..1
		

Crossrefs

Cf. A300089.

A300088 Number of nX7 0..1 arrays with every element equal to 0, 1, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

21, 64, 19, 359, 3089, 13646, 167131, 1179926, 7203918, 75245386, 508116867, 3750027371, 34007995888, 237070967056, 1896875784101, 15835534124727, 116172506766693, 951502244265963, 7649922105057405, 58629569564622365
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2018

Keywords

Comments

Column 7 of A300089.

Examples

			Some solutions for n=5
..0..1..0..1..0..1..1. .0..0..1..1..1..1..0. .0..1..0..1..0..1..0
..1..0..0..0..0..0..0. .0..0..1..1..1..1..0. .1..0..0..0..0..0..1
..0..0..0..0..0..0..0. .0..0..1..1..1..1..1. .1..1..1..1..0..0..0
..1..0..0..0..0..0..0. .1..1..1..1..1..0..1. .0..1..1..1..0..0..1
..0..1..0..1..0..1..1. .1..1..1..1..1..0..1. .0..1..1..1..0..0..1
		

Crossrefs

Cf. A300089.

A300083 Number of n X n 0..1 arrays with every element equal to 0, 1, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 4, 1, 25, 415, 1822, 167131, 14634300, 1518807971, 1088211703169
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2018

Keywords

Comments

Diagonal of A300089.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..1..1..0..1. .0..1..1..0..1. .0..1..0..1..0
..0..0..0..0..0. .1..0..1..1..0. .0..1..1..0..1. .1..0..0..0..1
..1..1..0..0..0. .1..1..1..1..1. .1..1..1..0..0. .1..1..1..1..1
..1..1..0..0..0. .1..0..1..1..0. .0..1..1..0..1. .0..1..1..1..0
..1..1..0..0..0. .0..1..1..0..1. .1..0..1..1..0. .0..1..1..1..0
		

Crossrefs

Cf. A300089.
Showing 1-6 of 6 results.