cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306413 a(n) is the multiplicative order of 2 modulo A001567(n).

Original entry on oeis.org

10, 40, 28, 24, 18, 36, 28, 11, 56, 36, 60, 28, 36, 16, 230, 15, 14, 660, 36, 52, 80, 198, 30, 252, 72, 200, 60, 58, 20, 42, 22, 45, 48, 28, 96, 70, 40, 48, 460, 180, 60, 3432, 88, 72, 102, 112, 168, 44, 264, 60, 192, 21, 144, 156, 30, 153, 28, 180, 100, 22, 1012, 36, 58, 48, 60, 28, 612, 120, 60, 166, 1008, 52, 532, 148, 9840
Offset: 1

Views

Author

Jianing Song, Feb 13 2019

Keywords

Comments

By definition, A001567 lists the odd composite numbers k such that ord(2,k) divides k - 1, where ord(2,k) is the multiplicative order of 2 modulo k. This sequence lists the values for ord(2,k) when k runs through A001567.

Examples

			A001567(1) = 341, 341 divides 2^10 - 1, 341 = 34*10 + 1.
A001567(2) = 561, 561 divides 2^40 - 1, 561 = 14*40 + 1.
A001567(3) = 645, 645 divides 2^28 - 1, 645 = 23*28 + 1.
A001567(4) = 1105, 1105 divides 2^24 - 1, 1105 = 46*24 + 1.
		

Crossrefs

Programs

  • Mathematica
    MultiplicativeOrder[2, #] & /@ Select[Range[1, 10^5, 2], CompositeQ[#] && PowerMod[2, # - 1, #] == 1 &] (* Amiram Eldar, Jun 29 2019 *)
  • PARI
    forstep(n=3, 1e5, 2, my(m=znorder(Mod(2,n))); if((n-1)%m==0 && !isprime(n), print1(m, ", ")))

Formula

a(n) = A002326((A001567(n)-1)/2).
a(n) = (A001567(n) - 1) / A300101(n). - Jianing Song, Dec 12 2021

A350083 a(n) = (A006935(n) - 1) / ord(2,A006935(n)/2), where ord(k,m) is the multiplicative order of k modulo m.

Original entry on oeis.org

1, 617, 1305, 9339, 225, 5297, 6985, 1549, 174233, 46549, 93701, 66879, 431087, 593887, 1288921, 446275, 43685, 1205, 3361, 2577225, 1313, 430739, 177301, 8541, 13067, 474525, 561301, 84725, 158873, 725725, 3851, 14019, 128861, 1090301, 2529, 430667, 541673
Offset: 1

Views

Author

Jianing Song, Dec 12 2021

Keywords

Comments

List of (2*k-1) / ord(2,k) where k ranges over the odd numbers such that 2^(2*k-1) == 1 (mod k).

Examples

			A006935(2) = 161038, so a(2) = (161038 - 1) / ord(2,161038/2) = 617.
A006935(3) = 215326, so a(3) = (215326 - 1) / ord(2,215326/2) = 1305.
		

Crossrefs

Programs

  • PARI
    list(lim) = my(v=[],d); forstep(k=1, lim, 2, if((2*k-1)%(d=znorder(Mod(2,k)))==0, v=concat(v,(2*k-1)/d))); v \\ gives a(n) for A347906(n) <= lim

Formula

a(n) = (2*A347906(n) - 1) / ord(2,A347906(n)) = (A006935(n) - 1) / A350084(n).

A367319 Base-2 Fermat pseudoprimes k such that (k-1)/ord(2, k) > (m-1)/ord(2, m) for all base-2 Fermat pseudoprimes m < k, where ord(2, k) is the multiplicative order of 2 modulo k.

Original entry on oeis.org

341, 1105, 1387, 2047, 4369, 4681, 5461, 13981, 15709, 35333, 42799, 60787, 126217, 158369, 215265, 256999, 266305, 486737, 617093, 1082401, 1398101, 2113665, 2304167, 4025905, 4188889, 4670029, 6236473, 6242685, 8388607, 13757653, 16843009, 17895697, 22369621
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2023

Keywords

Crossrefs

Subsequence of A001567.

Programs

  • Mathematica
    pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; seq[kmax_] := Module[{s = {}, r, rm = 0}, Do[If[pspQ[k], r = (k - 1)/MultiplicativeOrder[2, k]; If[r > rm, rm = r; AppendTo[s, k]]], {k, 1, kmax}]; s]; seq[10^6]
  • PARI
    ispsp(n) = n > 1 && n % 2 && Mod(2, n)^(n-1) == 1 && !isprime(n);
    lista(kmax) = {my(r, rm = 0); for(k = 1, kmax, if(ispsp(k), r = (k-1)/znorder(Mod(2, k)); if(r > rm, rm = r; print1(k, ", "))));}
Showing 1-3 of 3 results.