cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300101 a(n) = (pp-1)/x, where pp = A001567(n) and x = ord(2,pp), the smallest positive integer such that 2^x == 1 (mod pp).

Original entry on oeis.org

34, 14, 23, 46, 77, 48, 68, 186, 44, 75, 47, 117, 112, 273, 19, 312, 390, 10, 221, 160, 106, 45, 342, 42, 157, 64, 229, 237, 699, 345, 714, 352, 348, 668, 195, 285, 575, 487, 56, 163, 502, 9, 357, 439, 310, 296, 208, 803, 151, 684, 217, 2038, 324, 315, 1666, 344, 1973, 319, 607, 2763, 62, 1777, 1122, 1360, 1135, 2603
Offset: 1

Views

Author

Jonas Kaiser, Feb 24 2018

Keywords

Comments

For primes, this definition has a clear distribution over the natural numbers (see A001917), whereas there is no such distribution for pseudoprimes. Among the first 10^6 pseudoprimes of this sequence, the smallest number is 9. Are there any numbers in this sequence which are smaller than 9?
There is no value smaller than 9 for all the pseudoprimes below 2^64. - Amiram Eldar, Nov 09 2023

Crossrefs

Programs

  • Mathematica
    ((# - 1)/MultiplicativeOrder[2, #]) & /@ Select[Range[10^5], CompositeQ[#] && PowerMod[2, # - 1, #] == 1 &] (* Amiram Eldar, Nov 09 2023 *)
  • PARI
    is_A001567(n)={Mod(2, n)^n==2 & !isprime(n) & n>1};
    lista(nn) = {for (n=1, nn, if (is_A001567(n), print1((n-1)/znorder(Mod(2, n)), ", ");););} \\ Michel Marcus, Feb 25 2018

Formula

a(n) = (A001567(n) - 1) / A306413(n). - Jianing Song, Dec 12 2021

A367230 Base-2 Fermat pseudoprimes k such that the multiplicative order of 2 modulo k is odd.

Original entry on oeis.org

2047, 4681, 15841, 42799, 52633, 90751, 220729, 256999, 271951, 486737, 514447, 647089, 741751, 916327, 1082401, 1145257, 1730977, 1969417, 2205967, 2304167, 2748023, 2811271, 2953711, 2976487, 3567481, 4188889, 4469471, 4835209, 4863127, 5016191, 5049001, 5681809
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2023

Keywords

Comments

The corresponding sequence for primes is A014663.
These pseudoprimes seem to be relatively rare: among the 118968378 base-2 Fermat pseudoprimes below 2^64 only 6292535 are terms of this sequence.
These pseudoprimes appear in a theorem by Rotkiewicz and Makowski (1966) about pseudoprimes that are products of two Mersenne numbers (see A367229).

Crossrefs

Intersection of A001567 and A036259.
A367231 is a subsequence.

Programs

  • Mathematica
    Select[2*Range[10^6] + 1, PowerMod[2, # - 1, #] == 1 && CompositeQ[#] && OddQ[MultiplicativeOrder[2, #]] &]
  • PARI
    is(n) = n > 1 && n % 2 && Mod(2, n)^(n-1) == 1 && !isprime(n) && znorder(Mod(2, n)) % 2;

A350084 a(n) = ord(2,A006935(n)/2), where ord(k,m) is the multiplicative order of k modulo m.

Original entry on oeis.org

1, 261, 165, 275, 13425, 1485, 1305, 32085, 825, 3465, 2093, 3135, 495, 495, 261, 847, 9405, 552189, 198561, 261, 579261, 2475, 6237, 166725, 111111, 3393, 3565, 25245, 18585, 4437, 891891, 309455, 37125, 4833, 2301585, 14355, 11781, 3315, 915, 84975, 35259
Offset: 1

Views

Author

Jianing Song, Dec 12 2021

Keywords

Comments

List of ord(2,k) where k ranges over the odd numbers such that 2^(2*k-1) == 1 (mod k).

Examples

			A006935(2) = 161038, so a(2) = ord(2,161038/2) = 261.
A006935(3) = 215326, so a(3) = ord(2,215326/2) = 165.
		

Crossrefs

Programs

  • PARI
    list(lim) = my(v=[],d); forstep(k=1, lim, 2, if((2*k-1)%(d=znorder(Mod(2,k)))==0, v=concat(v,d))); v \\ gives a(n) for A347906(n) <= lim

Formula

a(n) = ord(2,A347906(n)) = (A006935(n) - 1) / A350083(n).
Showing 1-3 of 3 results.