cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300126 Number of Motzkin trees that are "uniquely closable skeletons".

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 2, 7, 5, 20, 19, 60, 62, 202, 202, 679, 711, 2304, 2507, 8046, 8856, 28434, 31855, 101288, 115596, 364710, 421654, 1323946, 1549090, 4836072, 5724582, 17771683, 21250527, 65653884, 79227989, 243639954, 296543356, 907841678, 1113706887
Offset: 0

Views

Author

Michael De Vlieger, Feb 25 2018

Keywords

Comments

From the Bodini-Tarau paper: "Uniquely closable skeletons of lambda terms are Motzkin-trees that predetermine the unique closed lambda term that can be obtained by labeling their leaves with de Bruijn indices".
For the relation to the set of Motzkin trees where all leaves are at the same unary height see A321396. - Peter Luschny, Nov 14 2018

Crossrefs

Cf. A000108, A001006, A135501, A321396 (row 1).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( (1-Sqrt(1 + 2*x*(Sqrt(1-4*x^2) -1)))/(2*x^2) )); // G. C. Greubel, Nov 14 2018
    
  • Maple
    gf := -(sqrt(2*z*(sqrt(1 - 4*z^2) - 1) + 1) - 1)/(2*z^2):
    series(gf, z, 44): seq(coeff(%, z, n), n=0..38); # Peter Luschny, Nov 14 2018
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1 + 2*x*(Sqrt[1-4*x^2]-1)])/(2*x^2), {x,0, 50}], x] (* G. C. Greubel, Nov 14 2018 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((1-sqrt(1 + 2*x*(sqrt(1-4*x^2) -1)))/(2*x^2))) \\ G. C. Greubel, Nov 14 2018
    
  • Sage
    s= (-(sqrt(2*x*(sqrt(1 - 4*x^2) - 1) + 1) - 1)/(2*x^2)).series(x, 30);
    s.coefficients(x, sparse=False) # G. C. Greubel, Nov 14 2018

Formula

G.f.: -(sqrt(2*z*(sqrt(1 - 4*z^2) - 1) + 1) - 1)/(2*z^2). - Peter Luschny, Nov 14 2018