A300126 Number of Motzkin trees that are "uniquely closable skeletons".
0, 1, 0, 1, 1, 2, 2, 7, 5, 20, 19, 60, 62, 202, 202, 679, 711, 2304, 2507, 8046, 8856, 28434, 31855, 101288, 115596, 364710, 421654, 1323946, 1549090, 4836072, 5724582, 17771683, 21250527, 65653884, 79227989, 243639954, 296543356, 907841678, 1113706887
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Olivier Bodini, Paul Tarau, On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms, arXiv:1709.04302 [cs.PL], 2017.
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( (1-Sqrt(1 + 2*x*(Sqrt(1-4*x^2) -1)))/(2*x^2) )); // G. C. Greubel, Nov 14 2018 -
Maple
gf := -(sqrt(2*z*(sqrt(1 - 4*z^2) - 1) + 1) - 1)/(2*z^2): series(gf, z, 44): seq(coeff(%, z, n), n=0..38); # Peter Luschny, Nov 14 2018
-
Mathematica
CoefficientList[Series[(1-Sqrt[1 + 2*x*(Sqrt[1-4*x^2]-1)])/(2*x^2), {x,0, 50}], x] (* G. C. Greubel, Nov 14 2018 *)
-
PARI
x='x+O('x^50); concat([0], Vec((1-sqrt(1 + 2*x*(sqrt(1-4*x^2) -1)))/(2*x^2))) \\ G. C. Greubel, Nov 14 2018
-
Sage
s= (-(sqrt(2*x*(sqrt(1 - 4*x^2) - 1) + 1) - 1)/(2*x^2)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 14 2018
Formula
G.f.: -(sqrt(2*z*(sqrt(1 - 4*z^2) - 1) + 1) - 1)/(2*z^2). - Peter Luschny, Nov 14 2018
Comments