cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A348712 Square array read by falling antidiagonals: T(n,k) is the number of bounded regions formed by the Lissajous curve x=cos(n*t), y=sin(k*t).

Original entry on oeis.org

1, 2, 0, 3, 1, 3, 4, 1, 8, 0, 5, 2, 1, 0, 5, 6, 2, 18, 3, 14, 0, 7, 3, 23, 1, 23, 3, 7, 8, 3, 2, 6, 32, 0, 20, 0, 9, 4, 33, 1, 1, 8, 33, 0, 9, 10, 4, 38, 9, 50, 10, 46, 7, 26, 0, 11, 5, 3, 2, 59, 1, 59, 0, 3, 5, 11, 12, 5, 48, 12, 68, 15, 72, 14, 60, 9, 32, 0
Offset: 1

Views

Author

Mohammed Yaseen, Oct 31 2021

Keywords

Examples

			Array begins:
+-----+---------------------------------------------------------------+
| n\k |  1    2    3    4    5    6    7    8    9   10   11   12  .. |
+-----+---------------------------------------------------------------+
|  1  |  1    2    3    4    5    6    7    8    9   10   11   12  .. |
|  2  |  0    1    1    2    2    3    3    4    4    5    5    6  .. |
|  3  |  3    8    1   18   23    2   33   38    3   48   53    4  .. |
|  4  |  0    0    3    1    6    1    9    2   12    2   15    3  .. |
|  5  |  5   14   23   32    1   50   59   68   77    2   95  104  .. |
|  6  |  0    3    0    8   10    1   15   18    1   23   25    2  .. |
|  7  |  7   20   33   46   59   72    1   98  111  124  137  150  .. |
|  8  |  0    0    7    0   14    3   21    1   28    6   35    1  .. |
|  9  |  9   26    3   60   77    8  111  128    1  162  179   18  .. |
| 10  |  0    5    9   14    0   23   27   32   36    1   45   50  .. |
| 11  | 11   32   53   74   95  116  137  158  179  200    1  242  .. |
| 12  |  0    0    0    3   22    0   33    8    3   10   55    1  .. |
| ..  |  ..  ..   ..   ..   ..   ..   ..   ..   ..   ..   ..   ..  .. |
+---------------------------------------------------------------------+
		

Crossrefs

Programs

  • Maple
    T := proc(n, k) option remember; igcd(n, k); if % = 1 then (n-1)*(k-1);
    ifelse(n::even, % / 2, % + n*k) else T(n / %, k / %) fi end:
    seq(seq(T(k, n - k + 1), k = 1..n), n = 1..12); # Peter Luschny, Oct 31 2021
  • Mathematica
    T[n_, k_] := T[n, k] = With[{m = GCD[n, k]}, Which[OddQ[n] && m == 1, (n-1)*(k-1)+n*k, EvenQ[n] && m == 1, (n-1)*(k-1)/2, True, T[n/m, k/m]]];
    Table[Table[T[k, n - k + 1], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Oct 28 2023 *)

Formula

T(n,k) = (n-1)*(k-1) + n*k when n is odd and GCD(n,k) = 1.
T(n,k) = (n-1)*(k-1)/2 when n is even and GCD(n,k) = 1.
T(n,k) = T(n/m,k/m) when GCD(n,k) = m.
Showing 1-1 of 1 results.