cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A300176 Number of n X n 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 255, 32321, 16288960, 32640586945, 260070240849459, 8239275981240122104, 1037894641315598870418625, 519856344665932729699372254283, 1035331146709687346593709910443435692
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2018

Keywords

Comments

Diagonal of A300182.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..1. .0..0..0..0..1. .0..0..0..1..0. .0..0..0..0..0
..1..1..1..0..1. .1..0..1..1..1. .1..1..0..1..0. .0..1..0..1..1
..0..0..0..1..0. .0..0..0..1..1. .1..1..1..1..1. .1..0..0..1..0
..1..1..0..1..0. .0..0..0..0..0. .1..1..1..1..0. .0..0..1..0..0
		

Crossrefs

Cf. A300182.

A300177 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 255, 2033, 16208, 129217, 1030173, 8212978, 65477359, 522013397, 4161713160, 33178950053, 264516722873, 2108839989442, 16812570686523, 134036975068993, 1068599860225264, 8519333271178937, 67919753770243365
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2018

Keywords

Comments

Column 3 of A300182.

Examples

			Some solutions for n=5
..0..1..1. .0..1..1. .0..0..0. .0..1..1. .0..1..0. .0..0..1. .0..0..1
..1..1..0. .0..0..1. .0..1..1. .1..1..0. .0..1..1. .0..0..1. .1..1..0
..1..1..1. .0..0..0. .0..1..0. .0..0..0. .1..0..0. .1..1..0. .0..1..0
..0..0..1. .0..1..1. .0..0..0. .1..1..1. .1..1..1. .0..0..1. .0..1..1
..1..0..0. .0..1..1. .1..1..0. .0..0..1. .1..0..1. .0..0..0. .0..0..0
		

Crossrefs

Cf. A300182.

Formula

Empirical: a(n) = 7*a(n-1) +7*a(n-2) +6*a(n-3).
Empirical g.f.: -x*(-3*x^2-4*x-4)/(-6*x^3-7*x^2-7*x+1). - Simon Plouffe, Jun 21 2018

A300178 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 2033, 32321, 513832, 8168705, 129863167, 2064518282, 32820974441, 521776133213, 8295010668576, 131871117920269, 2096439948834819, 33328453784142714, 529843858517908445, 8423268484861943881
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2018

Keywords

Comments

Column 4 of A300182.

Examples

			Some solutions for n=5
..0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..1. .0..0..0..1
..0..1..1..1. .0..1..0..0. .0..0..1..1. .1..0..0..0. .0..1..1..1
..1..0..1..1. .0..1..1..0. .0..0..0..1. .0..0..0..0. .0..1..0..0
..1..0..1..1. .0..1..1..1. .1..0..1..0. .0..0..1..0. .0..0..0..0
..1..1..0..1. .1..1..1..1. .1..1..1..0. .0..1..1..1. .1..1..0..0
		

Crossrefs

Cf. A300182.

Formula

Empirical: a(n) = 14*a(n-1) +27*a(n-2) +51*a(n-3) -10*a(n-4) -a(n-5) -10*a(n-6)

A300179 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 16208, 513832, 16288960, 516368256, 16369174784, 518912313824, 16449820393120, 521468820137344, 16530863182211264, 524037923251710208, 16612305236616613760, 526619683480028961920, 16694148528966490951424
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2018

Keywords

Comments

Column 5 of A300182.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..1..0. .0..0..0..0..1
..0..0..1..0..0. .1..0..1..0..1. .0..1..0..1..1. .1..0..1..1..0
..1..1..1..1..1. .0..1..0..0..0. .0..1..0..1..0. .1..0..1..0..1
..1..1..1..0..0. .0..0..0..0..1. .0..0..0..1..1. .1..0..1..0..1
		

Crossrefs

Cf. A300182.

Formula

Empirical: a(n) = 26*a(n-1) +158*a(n-2) +696*a(n-3) +756*a(n-4) +236*a(n-5) -3520*a(n-6) -640*a(n-7) -1792*a(n-8) +4096*a(n-9)

A300180 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 129217, 8168705, 516368256, 32640586945, 2063278351093, 130424025161538, 8244367994118153, 521143277869649643, 32942527085459429442, 2082364172855562710821, 131630476835565158890163
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2018

Keywords

Comments

Column 6 of A300182.

Examples

			Some solutions for n=5
..0..0..0..0..1..0. .0..0..0..0..1..1. .0..0..0..1..1..0. .0..0..0..0..1..1
..0..0..1..0..0..0. .0..0..0..0..1..1. .0..0..0..1..0..0. .0..0..1..0..1..1
..0..0..0..1..0..1. .0..0..1..1..0..1. .0..0..1..0..1..0. .0..0..0..1..1..0
..0..0..0..1..1..1. .0..0..0..1..1..1. .0..0..0..0..1..0. .0..0..0..1..0..1
..0..0..1..0..0..0. .0..0..0..0..1..1. .0..0..0..0..1..1. .0..0..1..0..0..1
		

Crossrefs

Cf. A300182.

Formula

Empirical: a(n) = 52*a(n-1) +613*a(n-2) +5871*a(n-3) +11376*a(n-4) +9186*a(n-5) -411458*a(n-6) +66088*a(n-7) -1386895*a(n-8) +8059846*a(n-9) -4373944*a(n-10) +14457696*a(n-11) -42895616*a(n-12) +12292096*a(n-13) -11452416*a(n-14) +15335424*a(n-15)

A300181 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 1030173, 129863167, 16369174784, 2063278351093, 260070240849459, 32781090037299062, 4131960022047721567, 520821416209744052297, 65648008688636835949268, 8274738539126604112006219
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2018

Keywords

Comments

Column 7 of A300182.

Examples

			Some solutions for n=5
..0..0..0..0..1..0..1. .0..0..0..0..0..1..0. .0..0..0..0..0..1..0
..0..0..0..0..1..0..0. .0..0..0..0..1..1..1. .0..0..0..0..1..1..1
..0..0..1..0..1..1..0. .0..0..1..0..1..0..0. .0..0..1..0..1..1..1
..0..0..0..0..0..1..0. .0..0..0..0..0..1..1. .0..0..0..0..1..0..1
..0..0..0..0..0..0..1. .0..0..0..1..0..0..1. .0..0..0..0..1..1..0
		

Crossrefs

Cf. A300182.

Formula

Empirical: a(n) = 97*a(n-1) +3088*a(n-2) +67900*a(n-3) +535436*a(n-4) +2144795*a(n-5) -39382635*a(n-6) -213273215*a(n-7) -1235565240*a(n-8) +12972062418*a(n-9) +2059782972*a(n-10) +287987017773*a(n-11) -1980551434156*a(n-12) +3078770034830*a(n-13) -22203993412729*a(n-14) +101282540869525*a(n-15) -131715576796751*a(n-16) +333153092704465*a(n-17) -1056455148776635*a(n-18) +1026244621587398*a(n-19) -1369366946312888*a(n-20) +3232027833916319*a(n-21) -1994557701400422*a(n-22) +1395753902831496*a(n-23) -3199229715521332*a(n-24) +1005729187047661*a(n-25) -486817052344206*a(n-26) +1362625629257738*a(n-27) -90977526307851*a(n-28) +87273022628065*a(n-29) -232774941539811*a(n-30) -29987016428365*a(n-31) -9185710451925*a(n-32) +6574031318250*a(n-33) +5832575910000*a(n-34) +1233792000000*a(n-35) +1786050000000*a(n-36)
Showing 1-6 of 6 results.