A300221 a(n) is the number of unlabeled, graded rank-3 lattices with n elements.
0, 0, 0, 1, 2, 4, 8, 18, 38, 88, 210, 528, 1396, 3946, 11896, 38644, 135790, 518645, 2160112, 9832013, 48945468, 266458643
Offset: 1
Examples
a(4)=1: The only possibility is the chain of length 3 (with 4 elements). a(6)=4: These are the four lattices. o o o o | / \ / \ /|\ o o o o o o o o /|\ | | |/| \|/ o o o o o o o o \|/ \ / \ / | o o o o
Links
- D. J. Kleitman and K. J. Winston, The asymptotic number of lattices, Ann. Discrete Math. 6 (1980), 243-249.
- J. Kohonen, Generating modular lattices up to 30 elements, arXiv:1708.03750 [math.CO] preprint (2017).
Crossrefs
Cf. A278691 (unlabeled graded lattices).
Formula
a(n) = Sum_{k=1..n-3} A300260(n-2-k, k).
Extensions
a(22) from Jukka Kohonen, Mar 03 2018
Comments