cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jukka Kohonen

Jukka Kohonen's wiki page.

Jukka Kohonen has authored 15 sequences. Here are the ten most recent ones:

A373922 Number of lattices on n unlabeled nodes, up to duality.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 11, 33, 129, 577, 3113, 19092, 132318, 1011665
Offset: 0

Author

Jukka Kohonen, Jun 30 2024

Keywords

Comments

Number of nonisomorphic lattices on n nodes, when from each pair of dual lattices only one is counted.

Examples

			a(5)=4: These are the four lattices. The dual of the last one is not counted.
  o      o        o       o
  |     / \      /|\      |
  o    o   |    o o o     o
  |    |   o     \|/     / \
  o    o   |      o     o   o
  |     \ /              \ /
  o      o                o
  |
  o
		

Formula

a(n) = (A006966(n) + A373894(n)) / 2.

A373894 Number of self-dual lattices on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 13, 36, 76, 232, 562, 1860, 5025
Offset: 0

Author

Jukka Kohonen, Jun 21 2024

Keywords

Comments

Lattices whose Hasse diagram looks the same if it is turned upside down.

Examples

			a(5)=3: These are the three lattices.
  o      o        o
  |     / \      /|\
  o    o   |    o o o
  |    |   o     \|/
  o    o   |      o
  |     \ /
  o      o
  |
  o
		

Crossrefs

Cf. A006966 (lattices), A133983 (self-dual posets).

Programs

  • Sage
    sum(L.is_lattice() and L.is_self_dual() for L in Posets(n))

A368461 a(n) is the number of unlabeled planar modular lattices on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 33, 70, 151, 329, 723, 1601, 3569, 8000, 18015, 40723, 92351, 209997, 478598, 1092856, 2499567, 5724970, 13128115, 30135636, 69238343, 159202607, 366308948, 843338278, 1942591448, 4476714720, 10320774953, 23802355725, 54911686727
Offset: 1

Author

Jukka Kohonen, Dec 25 2023

Keywords

Crossrefs

Cf. A006981 (modular lattices), A343161 (planar distributive lattices).

A347025 Maximum size of a family of nonempty sets on n elements such that no set is a union of some others.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 24
Offset: 0

Author

Jukka Kohonen, Sep 29 2021

Keywords

Comments

The upper bounds of Loo (table on pp. 11-13; formula below) may be improved given the term a(5). Specifically, using h = 1 and a(5) in Loo's upper bound formula yields a(6) <= 27 (versus the published 30). The lower and upper bounds may be used to distinguish this sequence from others in the OEIS. - Michael S. Branicky, Mar 16 2022
a(7) >= 44, a(8) >= 79, a(9) >= 144, a(10) >= 270; see the Apr 05 2022 entry in the Formula section. - Jon E. Schoenfield, Apr 04 2022
a(7) <= 45. - Jinyuan Wang, Apr 23 2022

Examples

			a(4) = 7: an example of such a family is {{1},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}.
		

Programs

  • Python
    from itertools import combinations
    def anysetunion(family):
        for s in family:
            allrest = 0
            for r in family:
                if r != s and r&s == r:
                    allrest |= r
                    if allrest == s:
                        return True
        return False
    def a(n):
        if n < 2: return n
        m = 2
        while True:
            allfailed = True
            for family in combinations(range(1, 2**n), m):
                unionfound = anysetunion(family)
                allfailed &= unionfound
                if not unionfound: break
            if allfailed: return m - 1
            m += 1
    print([a(n) for n in range(5)]) # Michael S. Branicky, Nov 09 2021

Formula

From Michael S. Branicky, Mar 16 2022: (Start)
Bounds from Loo (p. 10):
a(n) >= binomial(n, ceiling(n/2)),
a(n) >= max_{h=1..n-1} a(h) + a(n-h) + 1,
a(n) <= min_{h=1..n-1} a(h) + 2^h*a(n-h). (End)
For n > 2, a(n) >= max_{m=3..n} 2*floor(m/3) + binomial(m,3) + [n < 6] + Sum_{j=m..n-1} binomial(j,m-3) where [n < 6] is an Iverson bracket. - Jon E. Schoenfield, Apr 05 2022

Extensions

a(6) from Jinyuan Wang, Apr 19 2022

A342132 Number of unlabeled vertically indecomposable modular lattices on n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 7, 12, 28, 54, 127, 266, 614, 1356, 3134, 7091, 16482, 37929, 88622, 206295, 484445, 1136897, 2682451, 6333249, 15005945, 35595805, 84649515, 201560350, 480845007, 1148537092, 2747477575, 6579923491, 15777658535, 37871501929
Offset: 1

Author

Jukka Kohonen, Mar 01 2021

Keywords

Comments

A lattice is vertically decomposable if it has an element that is comparable to all elements and is neither the bottom nor the top element. Otherwise the lattice is vertically indecomposable.

Examples

			a(7)=3: These are the three lattices.
      o        o         __o__
     / \      /|\       / /|\ \
    o   o    o o o     o o o o o
   /|\ /    / \|/       \_\|/_/
  o o o    o   o           o
   \|/      \ /
    o        o
		

Crossrefs

Cf. A006981 (modular lattices, including vertically decomposable).

A306608 Table read by antidiagonals: T(x,y) is the minimum size of a planar additive basis for the rectangle [0,x]*[0,y], for x,y >= 0.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 3, 4, 4, 3, 3, 5, 4, 5, 3, 4, 5, 6, 6, 5, 4, 4, 6, 6, 7, 6, 6, 4, 4, 6, 7, 8, 8, 7, 6, 4, 4, 7, 8, 9, 8, 9, 8, 7, 4, 5, 7, 8, 9, 10, 10, 9, 8, 7, 5, 5, 8, 8, 10, 10, 11, 10, 10, 8, 8, 5, 5, 8, 10, 11, 11, 12, 12, 11, 11, 10, 8, 5
Offset: 0

Author

Jukka Kohonen, Feb 28 2019

Keywords

Comments

A planar additive basis is a set of points with nonnegative integer coordinates such that their pairwise sums cover a given rectangle of points with integer coordinates. Pairwise sums of a point with itself are included.
T(x,y) = T(y,x).

Examples

			The table starts:
  1, 2, 2, 3, 3, 4, 4, ...
  2, 3, 4, 5, 5, 6, ...
  2, 4, 4, 6, 6, ...
  3, 5, 6, 7, ...
  3, 5, 6, ...
  4, 6, ...
  4, ...
  ...
T(6,3)=9: The rectangle [0,6]*[0,3] has the following minimum basis of 9 elements, with elements marked as "*", and empty locations as "-".
  3  *------
  2  ---*---
  1  **-*---
  0  ***--*-
     0123456
		

Crossrefs

Main diagonal is A295771.

A322600 a(n) is the number of unlabeled rank-3 graded lattices with 5 coatoms and n atoms.

Original entry on oeis.org

1, 5, 20, 68, 190, 441, 907, 1690, 2916, 4734, 7310, 10836, 15528, 21619, 29365, 39045, 50961, 65434, 82809, 103453, 127751, 156117, 188980, 226794, 270037, 319204, 374813, 437409, 507553, 585831, 672847, 769233, 875637, 992735, 1121218, 1261802
Offset: 1

Author

Jukka Kohonen, Dec 19 2018

Keywords

Crossrefs

Fifth row of A300260.
Previous rows are A322598, A322599.

Formula

For n>=3: a(n) = (175/192)n^4 - (3079/480)n^3 + (11771/480)n^2
- [7268/160, 7273/160]n
+ [33600, 34019, 34072, 33627, 33152, 34915, 33624, 33947, 33472, 33507,
34520, 34459, 32832, 33827, 34072, 34395, 33344, 34147, 33432, 33947,
34240, 33699, 33752, 34267, 32832, 34595, 34264, 33627, 33152, 34147,
34200, 34139, 33472, 33507, 33752, 35035, 33024, 33827, 34072, 33627,
33920, 34339, 33432, 33947, 33472, 34275, 33944, 34267, 32832, 33827,
34840, 33819, 33152, 34147, 33432, 34715, 33664, 33507, 33752, 34267] / 960.
The value of the first bracket depends on whether n is even or odd. The value of the second bracket depends on whether (n mod 60) is 0, 1, 2, ..., 59.
Conjectures from Colin Barker, Dec 20 2018: (Start)
G.f.: x*(1 + 4*x + 14*x^2 + 43*x^3 + 102*x^4 + 184*x^5 + 282*x^6 + 368*x^7 + 411*x^8 + 400*x^9 + 333*x^10 + 237*x^11 + 142*x^12 + 70*x^13 + 26*x^14 + 7*x^15 + x^16) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-6) - a(n-7) + a(n-8) + a(n-9) + a(n-10) - a(n-13) - a(n-14) + a(n-15) for n>15.
(End)

A322599 a(n) is the number of unlabeled rank-3 graded lattices with 4 coatoms and n atoms.

Original entry on oeis.org

1, 4, 13, 34, 68, 121, 197, 299, 432, 600, 806, 1055, 1352, 1698, 2100, 2561, 3085, 3675, 4338, 5074, 5891, 6790, 7777, 8854, 10029, 11300, 12677, 14160, 15756, 17465, 19297, 21249, 23332, 25544, 27894, 30381, 33016, 35794, 38728, 41815, 45065
Offset: 1

Author

Jukka Kohonen, Dec 19 2018

Keywords

Examples

			a(2)=4: These are the four lattices.
    __o__        __o__       __o__       __o__
   / / \ \      / / \ \     / / \ \     / / \ \
  o o   o o     o o o o     o o o o     o o o o
   \_\ /_/|      \|/ \|      \|/  |     |/   \|
      o   o       o   o       o   o     o     o
       \ /         \ /         \ /       \_ _/
        o           o           o          o
		

Crossrefs

Fourth row of A300260.
Adjacent rows are A322598, A322600.

Formula

a(n) = (97/144)n^3 - (5/6)n^2 + [44/48, 47/48]n + [0, 13, 8, -45, 40, -19, 0, -5, 8, -27, 40, -37]/72. The value of the first bracket depends on whether n is even or odd. The value of the second bracket depends on whether (n mod 12) is 0, 1, 2, ..., 11.
Conjectures from Colin Barker, Dec 19 2018: (Start)
G.f.: x*(1 + 3*x + 8*x^2 + 17*x^3 + 21*x^4 + 21*x^5 + 16*x^6 + 7*x^7 + 3*x^8) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n>10.
(End)

A322598 a(n) is the number of unlabeled rank-3 graded lattices with 3 coatoms and n atoms.

Original entry on oeis.org

1, 3, 8, 13, 20, 29, 39, 50, 64, 78, 94, 112, 131, 151, 174, 197, 222, 249, 277, 306, 338, 370, 404, 440, 477, 515, 556, 597, 640, 685, 731, 778, 828, 878, 930, 984, 1039, 1095, 1154, 1213, 1274, 1337, 1401, 1466, 1534, 1602, 1672, 1744, 1817
Offset: 1

Author

Jukka Kohonen, Dec 19 2018

Keywords

Comments

Also number of bicolored graphs, with 3 vertices in the first color class and n in the second, with no isolated vertices, and where any two vertices in one class have at most one common neighbor.

Examples

			a(2)=3: These are the three lattices.
    o          o          o
   /|\        /|\        /|\
  o o o      o o o      o o o
  |/  |      |/_/|      |/ \|
  o   o      o   o      o   o
   \ /        \ /        \ /
    o          o          o
		

Crossrefs

Third row of A300260.
Next rows are A322599, A322600.

Programs

  • GAP
    List([1..50],n->Int((3/4)*n^2+(1/3)*n+1/4)); # Muniru A Asiru, Dec 20 2018
  • Maple
    seq(floor(3/4*n^2+n/3+1/4),n=1..100); # Robert Israel, Dec 19 2018
  • Mathematica
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 3, 8, 13, 20, 29}, 50] (* Jean-François Alcover, Dec 29 2018 *)
  • PARI
    Vec(x*(1 + 2*x + 4*x^2 + 2*x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)) + O(x^50)) \\ Colin Barker, Dec 19 2018
    

Formula

a(n) = floor( (3/4)n^2 + (1/3)n + 1/4 ).
From Colin Barker, Dec 19 2018: (Start)
G.f.: x*(1 + 2*x + 4*x^2 + 2*x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6.
(End)
From Robert Israel, Dec 19 2018: (Start)
a(6*m) = 27*m^2+2*m.
a(6*m+1) = 27*m^2+11*m+1.
a(6*m+2) = 27*m^2+20*m+3.
a(6*m+3) = 27*m^2+29*m+8.
a(6*m+4) = 27*m^2+38*m+13.
a(6*m+5) = 27*m^2+47*m+20.
These imply the conjectured G.f. and recursion.(End)

A300221 a(n) is the number of unlabeled, graded rank-3 lattices with n elements.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 8, 18, 38, 88, 210, 528, 1396, 3946, 11896, 38644, 135790, 518645, 2160112, 9832013, 48945468, 266458643
Offset: 1

Author

Jukka Kohonen, Mar 01 2018

Keywords

Comments

A graded lattice has rank 3 if its maximal chains have length 3.
They can be enumerated with a program such as that by Kohonen (2017).
Also called "two level lattices": apart from top and bottom, they have just coatoms and atoms. (Kleitman and Winston 1980)
Asymptotic upper bound: a(n) < b^(n^(3/2) + o(n^(3/2))), where b is about 1.699408. (Kleitman and Winston 1980)

Examples

			a(4)=1: The only possibility is the chain of length 3 (with 4 elements).
a(6)=4: These are the four lattices.
    o       o      o       o
    |      / \    / \     /|\
    o      o o    o o    o o o
   /|\     | |    |/|     \|/
  o o o    o o    o o      o
   \|/     \ /    \ /      |
    o       o      o       o
		

Crossrefs

Cf. A278691 (unlabeled graded lattices).

Formula

a(n) = Sum_{k=1..n-3} A300260(n-2-k, k).

Extensions

a(22) from Jukka Kohonen, Mar 03 2018