A300223 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A296091(i) = A296091(j), for all i, j >= 1.
1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 10, 4, 11, 2, 12, 13, 4, 5, 9, 2, 14, 2, 15, 4, 4, 4, 16, 2, 4, 11, 12, 2, 17, 2, 10, 9, 4, 2, 18, 19, 20, 4, 10, 2, 21, 4, 21, 4, 4, 2, 22, 2, 11, 10, 23, 4, 17, 2, 7, 11, 17, 2, 24, 2, 4, 9, 10, 11, 14, 2, 18, 25, 26, 2, 22, 4, 4, 11, 12, 2, 22, 11, 10, 4, 11, 11, 27, 2, 28, 9, 29, 2, 17, 2, 21, 14
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A296091(n) = if(1==n,n,A046523(sigma(n)-1)); Aux300223(n) = (1/2)*(2 + ((A046523(n)+A296091(n))^2) - A046523(n) - 3*A296091(n)); v300223 = rgs_transform(vector(up_to,n,Aux300223(n))); A300223(n) = v300223[n];
Extensions
Name changed by Antti Karttunen, May 20 2022
Comments