A300226 Filter sequence combining A046523(n) and A052126(n), the prime signature of n and n/(largest prime dividing n).
1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 8, 9, 2, 10, 2, 7, 8, 4, 2, 11, 12, 4, 13, 7, 2, 14, 2, 15, 8, 4, 16, 17, 2, 4, 8, 11, 2, 14, 2, 7, 18, 4, 2, 19, 20, 21, 8, 7, 2, 22, 16, 11, 8, 4, 2, 23, 2, 4, 18, 24, 16, 14, 2, 7, 8, 25, 2, 26, 2, 4, 27, 7, 28, 14, 2, 19, 29, 4, 2, 23, 16, 4, 8, 11, 2, 30, 28, 7, 8, 4, 16, 31, 2, 32, 18, 33, 2, 14, 2, 11, 34
Offset: 1
Keywords
Examples
a(6) = a(10) (= 4) because both are nonsquare semiprimes (2*3 and 2*5), and when the largest prime factor is divided out, both yield the same quotient, 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A052126(n) = if(1==n,n, my(f=factor(n)[, 1], gpf = f[#f]); n/gpf); \\ After code in A052126. Aux300226(n) = (1/2)*(2 + ((A052126(n)+A046523(n))^2) - A052126(n) - 3*A046523(n)); write_to_bfile(1,rgs_transform(vector(65537,n,Aux300226(n))),"b300226.txt");
Comments