cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300250 Restricted growth sequence transform of A297174: a filter sequence recording the prime signatures of divisors of n, with divisors ordered by their magnitude.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 8, 2, 9, 4, 4, 2, 10, 3, 4, 5, 9, 2, 11, 2, 12, 4, 4, 4, 13, 2, 4, 4, 14, 2, 15, 2, 9, 6, 4, 2, 16, 3, 8, 4, 9, 2, 17, 4, 14, 4, 4, 2, 18, 2, 4, 6, 19, 4, 15, 2, 9, 4, 11, 2, 20, 2, 4, 8, 9, 4, 15, 2, 21, 7, 4, 2, 22, 4, 4, 4, 23, 2, 24, 4, 9, 4, 4, 4, 25, 2, 8, 9, 26, 2, 15, 2, 23, 11
Offset: 1

Views

Author

Antti Karttunen, Mar 07 2018

Keywords

Comments

This sequence gives a coarser partitioning of natural numbers than A290110, and finer than A101296:
For all i, j:
A290110(i) = A290110(j) => a(i) = a(j) => A101296(i) = A101296(j).

Examples

			Divisors of 462 are 1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462.
Divisors of 858 are 1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858.
If one takes the smallest prime-signature representative (A046523) of each these, one gets in both cases [1, 2, 2, 6, 2, 2, 6, 6, 6, 6, 30, 30, 6, 30, 30, 210]. E.g. 462 = 2*3*7*11 and 858 = 2*3*11*13, which both have the same prime signature as 210 = 2*3*5*7. And similarly for all the other divisors, from which follows that a(462) = a(858).
On the other hand, for 12 = 2*2*3 the divisors are 1, 2, 3, 2*2, 2*3, 2*2*3, and for 18 = 2*3*3 the divisors are 1, 2, 3, 2*3, 3*3, 2*3*3, and because the prime signatures differ both in the fourth and in the fifth places, a(18) != a(12).
		

Crossrefs

Differs from similar A290110 for the first time at n=858.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    v101296 = rgs_transform(vector(up_to, n, A046523(n)));
    A101296(n) = v101296[n];
    A297174(n) = { my(s=0,i=-1); fordiv(n, d, if(d>1, i += (A101296(d)-1); s += 2^i)); (s); };
    write_to_bfile(1,rgs_transform(vector(up_to,n,A297174(n))),"b300250.txt");