cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300280 Triangle defined by T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1), for n>=0, k = 0..n, as read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 5, 10, 1, 0, 7, 57, 21, 1, 0, 9, 252, 246, 36, 1, 0, 11, 969, 2158, 710, 55, 1, 0, 13, 3414, 15927, 10260, 1635, 78, 1, 0, 15, 11329, 104883, 122125, 35085, 3255, 105, 1, 0, 17, 35992, 637252, 1273192, 611130, 96992, 5852, 136, 1, 0, 19, 110625, 3647268, 12057412, 9199386, 2321004, 230972, 9756, 171, 1, 0, 21, 331298, 19935477, 106181320, 124315310, 47518716, 7261394, 492408, 15345, 210, 1, 0, 23, 971609, 105054633, 883422885, 1546241270, 865414802, 193797618, 19669302, 963795, 23045, 253, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 01 2018

Keywords

Comments

Is there a closed-form expression for the terms T(n,k) of this triangle?
Row sums form A300279, with g.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).

Examples

			This triangle begins:
1;
0, 1;
0, 3, 1;
0, 5, 10, 1;
0, 7, 57, 21, 1;
0, 9, 252, 246, 36, 1;
0, 11, 969, 2158, 710, 55, 1;
0, 13, 3414, 15927, 10260, 1635, 78, 1;
0, 15, 11329, 104883, 122125, 35085, 3255, 105, 1;
0, 17, 35992, 637252, 1273192, 611130, 96992, 5852, 136, 1;
0, 19, 110625, 3647268, 12057412, 9199386, 2321004, 230972, 9756, 171, 1;
0, 21, 331298, 19935477, 106181320, 124315310, 47518716, 7261394, 492408, 15345, 210, 1;
0, 23, 971609, 105054633, 883422885, 1546241270, 865414802, 193797618, 19669302, 963795, 23045, 253, 1; ...
GENERATING FUNCTIONS.
G.f.: A(x,y) = Sum_{n>=0} x^n*y^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1).
Expanding,
G.f.: A(x,y) = 1 + x*y*(1+x)/(2 - (1+x))^2 + x^2*y^2*(1+x)^4/(2 - (1+x)^2)^3 + x^3*y^3*(1+x)^9/(2 - (1+x)^3)^4 + x^4*y^4*(1+x)^16/(2 - (1+x)^4)^5 + x^5*y^5*(1+x)^25/(2 - (1+x)^5)^6 + x^6*y^6*(1+x)^36/(2 - (1+x)^6)^7 + ...
Also, due to a series identity:
A(x,y) = 1/2 + (1 + x*y*(1+x))/2^2 + (1 + x*y*(1+x)^2)^2/2^3 + (1 + x*y*(1+x)^3)^3/2^4 + (1 + x*y*(1+x)^4)^4/2^5 + (1 + x*y*(1+x)^5)^5/2^6 + (1 + x*y*(1+x)^6)^6/2^7 + ... + (1 + x*y * (1+x)^n)^n / 2^(n+1) + ...
Explicitly,
G.f.: A(x,y) = 1 + y*x + (y^2 + 3*y)*x^2 + (y^3 + 10*y^2 + 5*y)*x^3 + (y^4 + 21*y^3 + 57*y^2 + 7*y)*x^4 + (y^5 + 36*y^4 + 246*y^3 + 252*y^2 + 9*y)*x^5 + (y^6 + 55*y^5 + 710*y^4 + 2158*y^3 + 969*y^2 + 11*y)*x^6 + (y^7 + 78*y^6 + 1635*y^5 + 10260*y^4 + 15927*y^3 + 3414*y^2 + 13*y)*x^7 + (y^8 + 105*y^7 + 3255*y^6 + 35085*y^5 + 122125*y^4 + 104883*y^3 + 11329*y^2 + 15*y)*x^8 + ...
The row sums begin
A300279 = [1, 1, 4, 16, 86, 544, 3904, 31328, 276798, 2660564, ...],
and has g.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).
RELATED TRIANGLE.
The coefficients in 1/A(x,y) forms the triangle:
1;
0, -1;
0, -3, 0;
0, -5, -4, 0;
0, -7, -38, -4, 0;
0, -9, -208, -104, -4, 0;
0, -11, -884, -1336, -202, -4, 0;
0, -13, -3268, -12112, -4768, -332, -4, 0;
0, -15, -11098, -89540, -75532, -12520, -494, -4, 0; ...
		

Crossrefs

Cf. A300279 (row sums).

Programs

  • PARI
    /* Must set N to a large value for accuracy: */ N=10000;
    {T(n,k) = round( sum(j=0,N, binomial(j+k,k) * binomial((j+k)*k,n-k) / 2^(j+k+1)*1. ) )}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Faster, without precision errors: */
    {T(n,k) = my(A = sum(m=0, n, x^m * y^m * (1+x + x*O(x^n))^(m^2) / (2 - (1+x + x*O(x^n))^m )^(m+1) )); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))

Formula

T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1).
G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n * y^k is given by:
(1) A(x,y) = Sum_{n>=0} (1 + x*y * (1+x)^n)^n / 2^(n+1).
(2) A(x,y) = Sum_{n>=0} x^n * y^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1).