cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300300 Number of ways to choose a multiset of strict partitions, or odd partitions, of odd numbers, whose weights sum to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 9, 14, 20, 32, 48, 69, 105, 150, 225, 322, 472, 669, 977, 1379, 1980, 2802, 3977, 5602, 7892, 11083, 15494, 21688, 30147, 42007, 58143, 80665, 111199, 153640, 211080, 290408, 397817, 545171, 744645, 1016826, 1385124, 1885022, 2561111, 3474730
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2018

Keywords

Examples

			The a(6) = 9 multiset partitions using odd-weight strict partitions: (5)(1), (14)(1), (3)(3), (32)(1), (3)(21), (3)(1)(1)(1), (21)(21), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1).
The a(6) = 9 multiset partitions using odd partitions: (5)(1), (3)(3), (311)(1), (3)(111), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
          `if`(d::odd, d, 0), d=divisors(j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(d::odd, b(d)*d, 0), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 02 2018
  • Mathematica
    nn=50;
    ser=Product[1/(1-x^n)^PartitionsQ[n],{n,1,nn,2}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

Euler transform of {Q(1), 0, Q(3), 0, Q(5), 0, ...} where Q = A000009.