A300300 Number of ways to choose a multiset of strict partitions, or odd partitions, of odd numbers, whose weights sum to n.
1, 1, 1, 3, 3, 6, 9, 14, 20, 32, 48, 69, 105, 150, 225, 322, 472, 669, 977, 1379, 1980, 2802, 3977, 5602, 7892, 11083, 15494, 21688, 30147, 42007, 58143, 80665, 111199, 153640, 211080, 290408, 397817, 545171, 744645, 1016826, 1385124, 1885022, 2561111, 3474730
Offset: 0
Keywords
Examples
The a(6) = 9 multiset partitions using odd-weight strict partitions: (5)(1), (14)(1), (3)(3), (32)(1), (3)(21), (3)(1)(1)(1), (21)(21), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1). The a(6) = 9 multiset partitions using odd partitions: (5)(1), (3)(3), (311)(1), (3)(111), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( `if`(d::odd, d, 0), d=divisors(j)), j=1..n)/n) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( `if`(d::odd, b(d)*d, 0), d=divisors(j)), j=1..n)/n) end: seq(a(n), n=0..45); # Alois P. Heinz, Mar 02 2018
-
Mathematica
nn=50; ser=Product[1/(1-x^n)^PartitionsQ[n],{n,1,nn,2}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]
Formula
Euler transform of {Q(1), 0, Q(3), 0, Q(5), 0, ...} where Q = A000009.