A300329 Number of solutions to +-1 +- 2 +- 3 +- ... +- n == n-1 (mod n).
2, 4, 2, 0, 6, 20, 18, 0, 56, 204, 186, 0, 630, 2340, 2182, 0, 7710, 29120, 27594, 0, 99858, 381300, 364722, 0, 1342176, 5162220, 4971008, 0, 18512790, 71582716, 69273666, 0, 260300986, 1010580540, 981706806, 0, 3714566310, 14467258260, 14096302710, 0
Offset: 1
Keywords
Examples
Solutions for n = 7: -------------------------------------------------------------- 1 +2 +3 +4 -5 -6 +7 = 6, -1 +2 +3 -4 +5 -6 +7 = 6, 1 +2 +3 +4 -5 -6 -7 = -8, -1 +2 +3 -4 +5 -6 -7 = -8, 1 +2 +3 -4 +5 +6 +7 = 20, -1 +2 -3 +4 +5 +6 +7 = 20, 1 +2 +3 -4 +5 +6 -7 = 6, -1 +2 -3 +4 +5 +6 -7 = 6, 1 +2 -3 -4 -5 -6 +7 = -8, -1 -2 +3 -4 -5 -6 +7 = -8, 1 +2 -3 -4 -5 -6 -7 = -22, -1 -2 +3 -4 -5 -6 -7 = -22, 1 -2 +3 -4 -5 +6 +7 = 6, -1 -2 -3 +4 -5 +6 +7 = 6, 1 -2 +3 -4 -5 +6 -7 = -8, -1 -2 -3 +4 -5 +6 -7 = -8, 1 -2 -3 +4 +5 -6 +7 = 6, 1 -2 -3 +4 +5 -6 -7 = -8.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..3333
Programs
-
PARI
a(n) = my (v=vector(n, k, k==1)); for (p=1, n, v = vector(n, k, v[1+(k-1+p)%n]+v[1+(k-1-p)%n])); v[1+(n-1)%n] \\ Rémy Sigrist, Mar 03 2018