cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300330 a(n) is the product over all prime powers p^e where p^e is the highest power of p dividing n and p-1 does not divide n.

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 7, 1, 9, 5, 11, 1, 13, 7, 15, 1, 17, 1, 19, 1, 21, 11, 23, 1, 25, 13, 27, 7, 29, 5, 31, 1, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 23, 47, 1, 49, 25, 51, 13, 53, 1, 55, 7, 57, 29, 59, 1, 61, 31, 63, 1, 65, 11, 67, 17, 69, 35, 71, 1
Offset: 1

Views

Author

Peter Luschny, Mar 12 2018

Keywords

Crossrefs

Programs

  • Julia
    using Nemo
    function A300330(n) P = 1
        for (p, e) in factor(ZZ(n))
            ! divisible(ZZ(n), p - 1) && (P *= p^e) end
    P end
    [A300330(n) for n in 1:72] |> println
    
  • Magma
    [n/(Denominator(Bernoulli(n)/n)/Denominator(Bernoulli(n))): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
  • Maple
    A300330 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(n)[2]; for f in F do if not divides(f[1]-1, n) then
    P := P*f[1]^f[2] fi od; P end: seq(A300330(n), n=1..100);
  • Mathematica
    a[n_]:=If[OddQ[n], 1, Denominator[BernoulliB[n]/n]/Denominator[BernoulliB[n]]]; Table[n/a[n], {n, 1, 100}] (* Vincenzo Librandi, Mar 12 2018 *)

Formula

a(n) * A193267(n) = n.