A300333 a(n) = max{ p prime | n = Sum_{j in 0:p-1} x^j*y^(p-j-1)} where x and y are positive integers with max(x, y) >= 2 or 0 if no such representation exists.
0, 0, 2, 2, 0, 0, 3, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 3, 3, 0, 0, 5, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 3, 3, 0, 0, 3, 5, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 3, 0, 3, 3, 0, 0, 0, 0, 3, 0, 0, 0, 5
Offset: 1
Keywords
Examples
Let f(x,y) = y^2 + x*y + x^2, g(x,y) = y^6 + x*y^5 + x^2*y^4 + x^3*y^3 + x^4*y^2 + x^5*y + x^6 and h(x,y) = Sum_{j in 0:10} x^j*y^(10-j). Then a(49) = 3 because 49 = f(5, 3). a(217) = 3 because 217 = f(13, 3). a(448) = 7 because 448 = g(2, 2). a(2047) = 11 because 2047 = h(2, 1).
Links
- Peter Luschny, Table of n, a(n) for n = 1..10000
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Programs
-
Julia
using Primes, Nemo function A300333(n) R, z = PolynomialRing(ZZ, "z") N = QQ(n) # Bounds from Fouvry & Levesque & Waldschmidt logn = log(n)^1.161 K = Int(floor(5.383*logn)) M = Int(floor(2*(n/3)^(1/2))) k, p = 2, 0 while k <= K if k == 7 K = Int(ceil(4.864*logn)) M = Int(ceil(2*(n/11)^(1/4))) end e = Int(eulerphi(ZZ(k))) c = cyclotomic(k, z) for y in 2:M, x in 1:y N == y^e*subst(c, QQ(x,y)) && (p = k) end k = nextprime(k+1) end return p end A300333list(upto) = [A300333(n) for n in 1:upto] println(A300333list(121))
Comments