A300360 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that x or y is a power of 2 (including 1) and x + 63*y = 2^(2k+1) for some k = 0,1,2,....
0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 3, 4, 2, 2, 4, 1, 2, 1, 1, 2, 4, 3, 1, 1, 2, 1, 6, 2, 2, 2, 5, 1, 4, 1, 2, 6, 3, 3, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 2, 1, 7, 3, 1, 4, 1, 2, 8, 1, 3, 7, 3, 4, 6, 3, 4, 4, 6, 4, 3, 2, 4, 3, 1, 2
Offset: 1
Keywords
Examples
a(38) = 1 since 38^2 = 2^2 + 0^2 + 12^2 + 36^2 with 2 = 2^1 and 2 + 63*0 = 2^1. a(86) = 2 since 86 = 65^2 + 1^2 + 19^2 + 53^2 = 65^2 + 1^2 + 31^2 + 47^2 with 1 = 2^0 and 65 + 63*1 = 2^7. a(535) = 3 since 535^2 = 2^2 + 130^2 + 64^2 + 515^2 = 2^2 + 130^2 + 139^2 + 500^2 = 8^2 + 520^2 + 40^2 + 119^2 with 2 = 2^1, 8 = 2^3, 2 + 63*130 = 2^13 and 8 + 63*520 = 2^15. a(1315) = 1 since 1315^2 = 512^2 + 512^2 + 61^2 + 1096^2 with 512 = 2^9 and 512 + 63*512 = 2^15.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; Pow[a_,n_]:=Pow[a,n]=IntegerQ[Log[a,n]]; tab={};Do[r=0;Do[If[SQ[n^2-x^2-y^2-z^2]&&(Pow[2,x]||Pow[2,y])&&Pow[4,(x+63y)/2],r=r+1],{x,0,n},{y,0,Sqrt[n^2-x^2]},{z,0,Sqrt[(n^2-x^2-y^2)/2]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Comments