A300385 In the ranked poset of integer partitions ordered by refinement, number of maximal chains from the partition with Heinz number n to the local maximum.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 6, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 11, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 9, 1, 1, 2, 11, 1, 3, 1, 2, 1, 3, 1, 19, 1, 1, 2, 2, 1, 3, 1, 14, 2, 1, 1, 10, 1, 1, 1, 5, 1, 10, 1, 2, 1, 1, 1, 33, 1, 2, 2, 7, 1, 3, 1, 5, 3
Offset: 1
Keywords
Examples
The a(36) = 6 maximal chains are the rows: (2211)<(222)<(42)<(6) (2211)<(411)<(42)<(6) (2211)<(411)<(51)<(6) (2211)<(321)<(42)<(6) (2211)<(321)<(51)<(6) (2211)<(321)<(33)<(6)
Links
Crossrefs
Programs
-
Mathematica
chc[ptn_]:=If[Length[ptn]===1,1,Total[chc/@Union[ReplaceList[ptn,{a___,x_,b___,y_,c___}:>Sort[{x+y,a,b,c},Greater]]]]]; primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[chc[Reverse[primeMS[n]]],{n,100}]
-
PARI
A300385(n) = if(1==n,0,if(bigomega(n)<=2,1,my(f=factor(n), u = #f~, s = 0); for(i=1,u,for(j=i+(1==f[i,2]),u, s += A300385((n/(f[i,1]*f[j,1])*prime(primepi(f[i,1])+primepi(f[j,1])))))); (s))); \\ Antti Karttunen, Oct 06 2018
-
PARI
memoA300385 = Map(); A300385(n) = if(1==n,0,if(bigomega(n)<=2,1,if(mapisdefined(memoA300385,n),mapget(memoA300385,n),my(f=factor(n), u = #f~, s = 0); for(i=1,u,for(j=i+(1==f[i,2]),u, s += A300385(prime(primepi(f[i,1])+primepi(f[j,1]))*(n/(f[i,1]*f[j,1]))))); mapput(memoA300385,n,s); (s)))); \\ (A memoized implementation). - Antti Karttunen, Oct 07 2018
Formula
a(1) = 0; for n > 1, if A001222(n) <= 2 [when n is a prime or semiprime], a(n) = 1, otherwise, a(n) = Sum_{p|n} Sum_{q|n, q>=(p+[p^2 does not divide n])} a(prime(primepi(p)+primepi(q)) * (n/(p*q))), where p ranges over all distinct primes dividing n, and q also ranges over primes dividing n, but with condition that q > p if p is a unitary prime factor of n, otherwise q >= p. Here primepi = A000720. - Antti Karttunen, Oct 07 2018
Extensions
More terms from Antti Karttunen, Oct 06 2018
Comments