cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300419 Smallest nonnegative number k such that k can be written in exactly n ways as x^2 + xy + y^2 where x and y are positive integers, with x >= y.

Original entry on oeis.org

0, 3, 91, 637, 1729, 24843, 12103, 405769, 53599, 157339, 593047, 59648043, 375193, 2989441, 8968323, 7709611, 1983163, 3360173089, 4877509, 2339177536969, 18384457, 377770939, 146482609, 439447827, 13882141, 1302924259
Offset: 0

Views

Author

Keywords

Comments

Except a(0) and a(1), all terms are in A118886.
First positive square term of this sequence is a(7) = 405769 = a(3)^2.
a(3), a(7) = a(3)^2 and a(13) = a(4)^2 are also the sum of two nonzero squares in exactly one way.
a(18) = 4877509, a(20) = 18384457, a(22) = 146482609, a(24) = 13882141, a(27) = 92672671, a(30) = 238997941, a(32) = 85276009, a(36) = 180467833. - Robert G. Wilson v, Mar 06 2018

Examples

			a(2) = 91 because 91 = 1^2 + 1*9 + 9^2 = 5^2 + 5*6 + 6^2 and 91 is the least number with this property.
		

Crossrefs

Programs

  • Mathematica
    nmx = 4750; t = Split@ Sort@ Flatten@ Table[x^2 + x*y + y^2, {x, nmx}, {y, x, nmx}]; lmt = 1 + Length@ t; f[n_] := Block[{k = 1}, While[Length@ t[[k]] != n && k < lmt, k++]; t[[k]][[1]]]; Array[f, 16] (* Robert G. Wilson v, Mar 06 2018 *)
  • PARI
    N(n,d)=sum(x=1,sqrt(n\3),sum(y=max(x,sqrtint(n-x^2)\2),sqrtint(n-2*x^2),x^2+x*y+y^2==n&&!(d&&printf("%d",[x,y])))) \\ Set 2nd arg = 1 to display all decompositions.
    a(n)=for(k=0,oo,N(k)==n&&return(k))

Formula

If A198799(n) is not a square and there is no square s < A198799(n) such that A088534(s) = n + 1, then a(n) = A198799(n), for all n > 0.
If A198799(n+1) is a square, then a(n) <= A198799(n+1).

Extensions

a(17)-a(18) from Giovanni Resta, Mar 16 2018
a(19)-a(25) from Bert Dobbelaere, Feb 18 2023