A327796 Values of x in the n solutions corresponding to the least number A300419(n) expressible in exactly n ways as x^2 + x*y + y^2 with x >= y >= 1, with x written as triangle T(n,k), k <= n. y is given in A327797.
1, 6, 9, 17, 21, 23, 25, 32, 37, 40, 91, 107, 118, 143, 154, 66, 77, 89, 94, 98, 109, 392, 455, 507, 513, 552, 560, 595, 145, 163, 173, 177, 197, 207, 218, 230, 233, 255, 273, 310, 325, 335, 357, 378, 390, 462, 498, 539, 561, 623, 658, 686, 711, 717, 763
Offset: 1
Examples
The triangle begins 1, 6, 9, 17, 21, 23, 25, 32, 37, 40, 91, 107, 118, 143, 154, 66, 77, 89, 94, 98, 109, 392, 455, 507, 513, 552, 560, 595, 145, 163, 173, 177, 197, 207, 218, 230 . T(3,1)=17, T(3,2)=21, T(3,3)=23 because A300419(3) = 637 corresponds to the 3 solutions 637 = 17^2 + 17*12 + 12^2 = 21^2 + 21*7 + 7^2 = 23^2 + 23*4 + 4^2, using the y-values 12, 7, 4 from A327797.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..171, rows 1..18 of triangle, flattened
- Robert G. Wilson v, Solutions of a(n) for n <= 16
Comments