A300796 Numbers x whose 10's complements y have the same sum of divisors of x, with x <> y.
3762, 4125, 4865, 5135, 5875, 6238, 37620, 41250, 42825, 44571, 48650, 48839, 49496, 50504, 51161, 51350, 55429, 57175, 58750, 62380, 376200, 389232, 397584, 399441, 412500, 417864, 428250, 434355, 436185, 445710, 446369, 472535, 481325, 483662, 483792, 486500
Offset: 1
Examples
3762 is in the sequence because sigma(3762) = sigma(10^4-3762) = 9360. 5875 is in the sequence because sigma(5875) = sigma(10^4-5875) = 7488.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,n; for n from 1 to q do a:=10^(ilog10(n)+1)-n; if n<>a and sigma(n)=sigma(a) then print(n); fi; od; end: P(10^6);
-
Mathematica
c10Q[n_]:=Module[{c=10^IntegerLength[n]-n},c!=n&&DivisorSigma[1,n] == DivisorSigma[1,c]]; Select[Range[500000],c10Q] (* Harvey P. Dale, Sep 24 2021 *)
Comments