cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300483 a(n) = 2 * Integral_{t>=0} T_n((t+1)/2) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

Original entry on oeis.org

2, 2, 3, 10, 47, 256, 1610, 11628, 95167, 871450, 8833459, 98233158, 1189398050, 15578268382, 219483388403, 3310225751098, 53214450175743, 908397242172212, 16411016615547530, 312824583201360248, 6274726126933368879, 132115002152296986730, 2913432246090160413827
Offset: 0

Views

Author

Max Alekseyev, Mar 06 2018

Keywords

Comments

For any integer n>=0, 2 * Integral_{t=-1..1} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1/2..1/2} T_n(z)*exp(-2*z)*dz = A300485(n)*exp(1) - a(n)*exp(-1).

Crossrefs

Row m=1 in A300480.

Programs

  • Maple
    seq(2*int(orthopoly[T](n,(t+1)/2)*exp(-t),t=0..infinity),n=0..50); # Robert Israel, Mar 06 2018
  • Mathematica
    a[n_] := 2 Integrate[ChebyshevT[n, (t + 1)/2] Exp[-t], {t, 0, Infinity}];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 28 2019 *)
  • PARI
    { A300483(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+1)/2)), x, 1); }

Formula

a(n) = Sum_{i=0..n} A127672(n,i) * A000522(i).
a(n) = A300480(1,n) = A300481(-1,n).
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Apr 15 2020