A300483 a(n) = 2 * Integral_{t>=0} T_n((t+1)/2) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
2, 2, 3, 10, 47, 256, 1610, 11628, 95167, 871450, 8833459, 98233158, 1189398050, 15578268382, 219483388403, 3310225751098, 53214450175743, 908397242172212, 16411016615547530, 312824583201360248, 6274726126933368879, 132115002152296986730, 2913432246090160413827
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..449
Programs
-
Maple
seq(2*int(orthopoly[T](n,(t+1)/2)*exp(-t),t=0..infinity),n=0..50); # Robert Israel, Mar 06 2018
-
Mathematica
a[n_] := 2 Integrate[ChebyshevT[n, (t + 1)/2] Exp[-t], {t, 0, Infinity}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 28 2019 *)
-
PARI
{ A300483(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+1)/2)), x, 1); }
Formula
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Apr 15 2020
Comments