A300562 Condensed deep factorization of n, in binary. (Remove all trailing 0's and one trailing 1 from A300560.)
0, 1, 11100, 111, 111100100, 110011100, 111110000, 1111100, 1110011, 1100111100100, 1111100100100, 1111000011100, 1110011100100, 1100111110000, 11100100111100100, 11111, 1111110000100, 11001110011, 1111110010000, 11110000111100100
Offset: 1
Keywords
Examples
The first term a(1) = 0 represents, by convention, the empty factorization of the number 1. To reconstruct the full deep factorization A300560(n), append a digit 1 and then as many 0's as to balance the number of 1's: a(2) = 1, append a 1 => 11; append two 0's => 1100 = A300560(2). a(3) = 11100, append a 1 => 111001; append two 0's => 11100100 = A300560(3). a(4) = 111, append a 1 => 1111; append four 0's => 11110000 = A300560(4).
Formula
a(n) = A007088(A300563(n)), see there for an expression in terms of A300560. - M. F. Hasler, Mar 16 2018
Comments