A300565 Numbers z such that there is a solution to x^3 + y^4 = z^5 with x, y, z >= 1.
32, 250, 1944, 2744, 3888, 19208, 27648, 55296, 59049, 59582, 81000, 82944, 131072, 135000, 185193, 200000
Offset: 1
Examples
a(1) = 32 = 2^5 is in the sequence because (2^5)^5 = (2^6)^4 + (2^8)^3, using 1 + 1 = 2. a(2) = 250 = 2*5^3 is in the sequence because 250^5 = 2^5*5^15 = (5^4)^4 + (3*5^5)^3, using 5 + 3^3 = 2^5. This solution is special because x and y are not multiples of z. a(3) = 1944 = 2^3*3^5 is in the sequence because 1944^5 = (2^4*3^6)^4 + (2^5*3^8)^3, using 2 + 1 = 3. a(7) = 27648 = 2^10*3^3 is in the sequence because (2^10*3^3)^5 = (2^12*3^4)^4 + (2^16*3^5)^3, using 3 + 1 = 2^2. a(10) = 59582 = 2*31^3 is in the sequence because (2*31^3)^5 = (31^4)^4 + (31^5)^3, using 31 + 1 = 2^5. This is the second case where x and y are not multiples of z.
Crossrefs
Programs
-
PARI
is(z)=for(y=1,sqrtnint(-1+z=z^5,4),ispower(z-y^4,3)&&return(y))
Extensions
a(11)-a(16) from Giovanni Resta, Jan 23 2020
Comments