A300567 Numbers z such that z^7 = x^5 + y^6 for some integers x, y >= 1.
8192, 7593750, 8605184
Offset: 1
Examples
a(1) = 8192 = 2^13 is in the sequence because (2^13)^7 = (2^18)^5 + (2^15)^6, using 18*5 = 15*6 = 90 = 13*7 - 1 and 1 + 1 = 2.
Links
- Hayden Chesnut, A300567 Python Code
Crossrefs
Programs
-
PARI
is(z)=for(y=1,sqrtnint(-1+z=z^7,6),ispower(z-y^6,5)&&return(y)) /* Code below for illustration only, not guaranteed to give a complete list. */ S=[]; N=1e5; forstep(b=1,99,1/6, forstep(a=1,N,1/6, issquare(b^12/4+a^5,&r)&& !frac(z=b^6/2+r)&& S=setunion(S,[z])); print1([b])); S
-
Python
# See Hayden link. This code is built to identify valid z values based on specific conjectures outlined in the file.
Comments