A300617
O.g.f. A(x) satisfies: [x^n] exp( n * A(x) ) = n^2 * [x^(n-1)] exp( n * A(x) ) for n>=1.
Original entry on oeis.org
1, 3, 30, 550, 15375, 601398, 31299268, 2093655600, 175312873125, 17987972309725, 2221603804365924, 325310016974127276, 55749742122979646105, 11056914755618659399500, 2513208049272148754203200, 649086459674801585681092992, 189044817293654530855544266209, 61671809408989968268084102641075, 22399957973327602630210233608217250, 9009223131975798265447660437783058050
Offset: 1
O.g.f.: A(x) = x + 3*x^2 + 30*x^3 + 550*x^4 + 15375*x^5 + 601398*x^6 + 31299268*x^7 + 2093655600*x^8 + 175312873125*x^9 + 17987972309725*x^10 + ...
where
exp(A(x)) = 1 + x + 7*x^2/2! + 199*x^3/3! + 14065*x^4/4! + 1924201*x^5/5! + 445859911*x^6/6! + 161145717727*x^7/7! + 85790577700129*x^8/8! + ... + A300616(n)*x^n/n! + ...
such that: [x^n] exp( n * A(x) ) = n^2 * [x^(n-1)] exp( n * A(x) ).
RELATED SEQUENCES.
The sequence A300589(n) = a(n) / (n*(n+1)/2) begins:
[1, 1, 5, 55, 1025, 28638, 1117831, 58157100, 3895841625, 327054041995, ...].
The table of coefficients in x^k/k! in exp(-n*A(x)) * (1 - n^2*x) begins:
n=1: [1, 0, 5, 178, 13269, 1853876, 434314705, 158024698350, ...];
n=2: [1, -2, 0, 248, 22976, 3416592, 822150016, 303575549440, ...];
n=3: [1, -6, -27, 0, 21861, 4129758, 1079984097, 415322613324, ...];
n=4: [1, -12, -88, -848, 0, 3286304, 1109402752, 469332346368, ...];
n=5: [1, -20, -195, -2650, -55675, 0, 794678425, 438768342850, ...];
n=6: [1, -30, -360, -5832, -161856, -6828624, 0, 293555007360, ...];
n=7: [1, -42, -595, -10892, -339339, -18549958, -1433676839, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
-
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(#A-1)); A[#A] = ((#A-1)^2*V[#A-1] - V[#A])/(#A-1) ); polcoeff( log(Ser(A)), n)}
for(n=1, 20, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = -Vec( exp(m^1*x*Ser(A))*(1-m^2*x +x^2*O(x^m))^(1))[m+1]/m ); A[n]}
for(n=1, 20, print1(a(n), ", "))
A300596
E.g.f. A(x) satisfies: [x^n] A(x)^(n^4) = n^4 * [x^(n-1)] A(x)^(n^4) for n>=1.
Original entry on oeis.org
1, 1, 17, 13171, 56479849, 738706542221, 22885801082965201, 1448479282286023114807, 169382934361790242266135761, 33954915787325983176711221469529, 10997512067125948734754888814957997361, 5482894935903399886164748355296587003210971, 4041251688669102134446309448401146782811371078137
Offset: 0
E.g.f.: A(x) = 1 + x + 17*x^2/2! + 13171*x^3/3! + 56479849*x^4/4! + 738706542221*x^5/5! + 22885801082965201*x^6/6! + 1448479282286023114807*x^7/7! + 169382934361790242266135761*x^8/8! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^n in A(x)^(n^4) begins:
n=1: [(1), (1), 17/2, 13171/6, 56479849/24, 738706542221/120, ...];
n=2: [1, (16), (256), 113168/3, 114614528/3, 1486010366512/15, ...];
n=3: [1, 81, (7857/2), (636417/2), 1671341283/8, 20586397669407/40, ...];
n=4: [1, 256, 34816, (11641088/3), (2980118528/3), 26464517792512/15, ...];
n=5: [1, 625, 400625/2, 271091875/6, (232095075625/24), (145059422265625/24), ...];
n=6: [1, 1296, 850176, 379068336, 133027474176, (243163666719504/5), (315140112068477184/5), ...]; ...
in which the coefficients in parenthesis are related by
1 = 1*1; 256 = 2^4*16; 636417/2 = 3^4*7857/2; 2980118528/3 = 4^4*11641088/3; ...
illustrating that: [x^n] A(x)^(n^4) = n^4 * [x^(n-1)] A(x)^(n^4).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 8*x^2 + 2187*x^3 + 2351104*x^4 + 6153518125*x^5 + 31779658925496*x^6 + 287364845865893467*x^7 + 4200677982722915635200*x^8 + ... + A300597(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^4)); A[#A] = ((#A-1)^4*V[#A-1] - V[#A])/(#A-1)^4 ); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
A300619
O.g.f. A(x) satisfies: [x^n] exp( n * A(x) ) = n^3 * [x^(n-1)] exp( n * A(x) ) for n>=1.
Original entry on oeis.org
1, 7, 207, 14226, 1852800, 409408077, 142286748933, 73448832515952, 53835885818473473, 54041298732304775000, 72129250579997923194091, 124900802377559946754633602, 274851919918333747166200590840, 755158633069275870471471631726803, 2551279948230221759814139760682442500
Offset: 1
O.g.f.: A(x) = x + 7*x^2 + 207*x^3 + 14226*x^4 + 1852800*x^5 + 409408077*x^6 + 142286748933*x^7 + 73448832515952*x^8 + 53835885818473473*x^9 + ...
where
exp(A(x)) = 1 + x + 15*x^2/2! + 1285*x^3/3! + 347065*x^4/4! + 224232501*x^5/5! + 296201195791*x^6/6! + 719274160258585*x^7/7! + ... + A300618(n)*x^n/n! + ...
such that: [x^n] exp( n * A(x) ) = n^3 * [x^(n-1)] exp( n * A(x) ).
-
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(#A-1)); A[#A] = ((#A-1)^3*V[#A-1] - V[#A])/(#A-1) ); polcoeff( log(Ser(A)), n)}
for(n=1, 20, print1(a(n), ", "))
A300615
O.g.f. A(x) satisfies: [x^n] exp( n^5 * A(x) ) = n^5 * [x^(n-1)] exp( n^5 * A(x) ) for n>=1.
Original entry on oeis.org
1, 16, 19683, 142475264, 3436799053125, 212148041589128016, 28458158819417861315152, 7380230750280159370894934016, 3385049575573746853297963891959753, 2561548157856026756893458765378989150000, 3026444829408778969259555715061437179090541565, 5340113530831632053993990154143996936096662034267136
Offset: 1
O.g.f.: A(x) = x + 16*x^2 + 19683*x^3 + 142475264*x^4 + 3436799053125*x^5 + 212148041589128016*x^6 + 28458158819417861315152*x^7 + ...
where
exp(A(x)) = 1 + x + 33*x^2/2! + 118195*x^3/3! + 3419881993*x^4/4! + 412433022394701*x^5/5! + 152749066271797582081*x^6/6! + ... + A300614(n)*x^n/n! + ...
such that: [x^n] exp( n^5 * A(x) ) = n^5 * [x^(n-1)] exp( n^5 * A(x) ).
-
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^5)); A[#A] = ((#A-1)^5*V[#A-1] - V[#A])/(#A-1)^5 ); polcoeff( log(Ser(A)), n)}
for(n=1, 20, print1(a(n), ", "))
A300625
Table of row functions R(n,x) that satisfy: [x^k] exp( k^n * R(n,x) ) = k^n * [x^(k-1)] exp( k^n * R(n,x) ) for k>=1, n>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 4, 27, 14, 1, 8, 243, 736, 85, 1, 16, 2187, 40448, 30525, 621, 1, 32, 19683, 2351104, 12519125, 1715454, 5236, 1, 64, 177147, 142475264, 6153518125, 6111917748, 123198985, 49680, 1, 128, 1594323, 8856272896, 3436799053125, 31779658925496, 4308276119854, 10931897664, 521721, 1, 256, 14348907, 558312194048, 2049047412828125, 212148041589128016, 287364845865893467, 4151360558858752, 1172808994833, 5994155
Offset: 1
This table of coefficients T(n,k) begins:
n=1: [1, 1, 3, 14, 85, 621, 5236, 49680, ...];
n=2: [1, 2, 27, 736, 30525, 1715454, 123198985, 10931897664, ...];
n=3: [1, 4, 243, 40448, 12519125, 6111917748, 4308276119854, ..];
n=4: [1, 8, 2187, 2351104, 6153518125, 31779658925496, ...];
n=5: [1, 16, 19683, 142475264, 3436799053125, 212148041589128016, ...];
n=6: [1, 32, 177147, 8856272896, 2049047412828125, 1569837215111038900704, ...];
n=7: [1, 64, 1594323, 558312194048, 1256793474918203125, 12020665333382306853887808, ...]; ...
such that row functions R(n,x) = Sum_{k>=1} T(n,k)*x^k satisfy:
[x^k] exp( k^n * R(n,x) ) = k^n * [x^(k-1)] exp( k^n * R(n,x) ) for k>=1.
Row functions R(n,x) begin:
R(1,x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 621*x^6 + 5236*x^7 + 49680*x^8 + ...
R(2,x) = x + 2*x^2 + 27*x^3 + 736*x^4 + 30525*x^5 + 1715454*x^6 + ...
R(3,x) = x + 4*x^2 + 243*x^3 + 40448*x^4 + 12519125*x^5 + 6111917748*x^6 + ...
R(4,x) = x + 8*x^2 + 2187*x^3 + 2351104*x^4 + 6153518125*x^5 + ...
etc.
-
{T(n, k) = my(A=[1]); for(i=1, k+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^n)); A[#A] = ((#A-1)^n * V[#A-1] - V[#A])/(#A-1)^n ); polcoeff( log(Ser(A)), k)}
/* Print as a table of row functions: */
for(n=1, 8, for(k=1, 8, print1(T(n, k), ", ")); print(""))
/* Print as a flattened triangle: */
for(n=1, 12, for(k=1, n-1, print1(T(n-k, k), ", ")); )
Showing 1-5 of 5 results.
Comments