cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300619 O.g.f. A(x) satisfies: [x^n] exp( n * A(x) ) = n^3 * [x^(n-1)] exp( n * A(x) ) for n>=1.

Original entry on oeis.org

1, 7, 207, 14226, 1852800, 409408077, 142286748933, 73448832515952, 53835885818473473, 54041298732304775000, 72129250579997923194091, 124900802377559946754633602, 274851919918333747166200590840, 755158633069275870471471631726803, 2551279948230221759814139760682442500
Offset: 1

Views

Author

Paul D. Hanna, Mar 10 2018

Keywords

Comments

O.g.f. equals the logarithm of the e.g.f. of A300618.
It is remarkable that this sequence should consist entirely of integers.

Examples

			O.g.f.: A(x) = x + 7*x^2 + 207*x^3 + 14226*x^4 + 1852800*x^5 + 409408077*x^6 + 142286748933*x^7 + 73448832515952*x^8 + 53835885818473473*x^9 + ...
where
exp(A(x)) = 1 + x + 15*x^2/2! + 1285*x^3/3! + 347065*x^4/4! + 224232501*x^5/5! + 296201195791*x^6/6! + 719274160258585*x^7/7! + ... + A300618(n)*x^n/n! + ...
such that: [x^n] exp( n * A(x) ) = n^3 * [x^(n-1)] exp( n * A(x) ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(#A-1)); A[#A] = ((#A-1)^3*V[#A-1] - V[#A])/(#A-1) ); polcoeff( log(Ser(A)), n)}
    for(n=1, 20, print1(a(n), ", "))