cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300620 Table of row functions R(n,x) that satisfy: [x^k] exp( k * R(n,x) ) = k^n * [x^(k-1)] exp( k * R(n,x) ) for k>=1, n>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 7, 30, 14, 1, 15, 207, 550, 85, 1, 31, 1290, 14226, 15375, 621, 1, 63, 7803, 340550, 1852800, 601398, 5236, 1, 127, 46830, 8086594, 215528250, 409408077, 31299268, 49680, 1, 255, 280647, 192663030, 25359510515, 280823532696, 142286748933, 2093655600, 521721, 1, 511, 1682130, 4605331346, 3013207159725, 197431364485587, 676005054191880, 73448832515952, 175312873125, 5994155
Offset: 1

Views

Author

Paul D. Hanna, Mar 12 2018

Keywords

Examples

			This table of coefficients T(n,k) begins:
n=1: [1, 1, 3, 14, 85, 621, 5236, ...];
n=2: [1, 3, 30, 550, 15375, 601398, 31299268, ...];
n=3: [1, 7, 207, 14226, 1852800, 409408077, 142286748933, ...];
n=4: [1, 15, 1290, 340550, 215528250, 280823532696, 676005054191880, ...];
n=5: [1, 31, 7803, 8086594, 25359510515, 197431364485587, ...];
n=6: [1, 63, 46830, 192663030, 3013207159725, 140620832995924134, ...];
n=7: [1, 127, 280647, 4605331346, 359881205186350, 100749338488125315273, 82972785219971584775198767, ...]; ...
such that row functions R(n,x) = Sum_{k>=1} T(n,k)*x^k satisfy:
[x^k] exp( k * R(n,x) ) = k^n * [x^(k-1)] exp( k * R(n,x) ) for k>=1.
Row functions R(n,x) begin:
R(1,x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 621*x^6 + 5236*x^7 + 49680*x^8 + ...
R(2,x) = x + 3*x^2 + 30*x^3 + 550*x^4 + 15375*x^5 + 601398*x^6 + 31299268*x^7 + ...
R(3,x) = x + 7*x^2 + 207*x^3 + 14226*x^4 + 1852800*x^5 + 409408077*x^6 + ...
R(4,x) = x + 15*x^2 + 1290*x^3 + 340550*x^4 + 215528250*x^5 + 280823532696*x^6 + ...
etc.
		

Crossrefs

Cf. A088716 (row 1), A300617 (row 2), A300619 (row 3).

Programs

  • PARI
    {T(n,k) = my(A=[1]); for(i=1, k+1, A=concat(A, 0); V=Vec(Ser(A)^(#A-1)); A[#A] = ((#A-1)^n*V[#A-1] - V[#A])/(#A-1) ); polcoeff( log(Ser(A)), k)}
    for(n=1, 8, for(k=1,8, print1(T(n,k), ", "));print(""))