cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300624 Figurate numbers based on the 11-dimensional regular convex polytope called the 11-dimensional cross-polytope, or 11-dimensional hyperoctahedron.

Original entry on oeis.org

0, 1, 22, 243, 1804, 10165, 46530, 180775, 614680, 1871145, 5188590, 13286043, 31760676, 71513949, 152784282, 311603535, 609802800, 1150082385, 2098144710, 3714481475, 6399123260, 10753517061, 17664712562, 28418229623, 44847366984, 69528316025, 106032285086
Offset: 0

Views

Author

Keywords

Comments

The 11-dimensional cross-polytope is represented by the Schlaefli symbol {3, 3, 3, 3, 3, 3, 3, 3, 3, 4}. It is the dual of the 11-dimensional hypercube.

Crossrefs

Similar sequences: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099193 (m=7), A099195 (m=8), A099196 (m=9), A099197 (m=10).

Programs

  • Magma
    [(n*(14175 + 83754*n^2 + 50270*n^4 + 7392*n^6 + 330*n^8 + 4*n^10)) / 155925 : n in [0..40]]; // Wesley Ivan Hurt, Jul 17 2020
  • PARI
    concat(0, Vec(x*(1 + x)^10 / (1 - x)^12 + O(x^40))) \\ Colin Barker, Aug 15 2018
    
  • PARI
    a(n) = (n*(14175 + 83754*n^2 + 50270*n^4 + 7392*n^6 + 330*n^8 + 4*n^10)) / 155925 \\ Colin Barker, Aug 15 2018
    

Formula

a(n) = 11-crosspolytope(n).
From Colin Barker, Aug 15 2018: (Start)
G.f.: x*(1 + x)^10 / (1 - x)^12.
a(n) = (n*(14175 + 83754*n^2 + 50270*n^4 + 7392*n^6 + 330*n^8 + 4*n^10)) / 155925.
(End)