A300654 a(n) is the greatest k such that, for i = 1..k, the binary representation of i appears as a substring in the binary representation of 1/n (ignoring the radix point and adding trailing zeros if necessary in case of a terminating expansion).
2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 8, 2, 9, 2, 2, 2, 4, 4, 16, 4, 4, 8, 6, 2, 8, 9, 11, 2, 20, 2, 2, 2, 4, 4, 8, 4, 32, 16, 6, 4, 4, 4, 8, 8, 6, 6, 12, 2, 12, 8, 2, 9, 33, 11, 10, 2, 8, 20, 37, 2, 41, 2, 2, 2, 4, 4, 64, 4, 14, 8, 14, 4, 4, 32, 11, 16, 17, 6, 22, 4
Offset: 1
Examples
For n = 19: - the binary expansion of 1/19 is 0.0000(110101111001010000) (with repeating digits in parentheses), - the first occurrence of the binary representation of k for k = 1..16 is: k bin(k) bin(1/19) with bin(k) in parentheses -- ------ ------------------------------------ 1 1 0.0000(1)101... 2 10 0.00001(10)101... 3 11 0.0000(11)010... 4 100 0.000011010111(100)101... 5 101 0.00001(101)011... 6 110 0.0000(110)101... 7 111 0.000011010(111)100... 8 1000 0.00001101011110010(1000)011... 9 1001 0.000011010111(1001)010... 10 1010 0.00001(1010)111... 11 1011 0.0000110(1011)110... 12 1100 0.00001101011(1100)101... 13 1101 0.0000(1101)011... 14 1110 0.0000110101(1110)010... 15 1111 0.000011010(1111)001... 16 10000 0.00001101011110010(10000)110... - the binary representation of 17 (10001) is missing, - hence a(19) = 16.
Links
- Rémy Sigrist, PARI program for A300654
Programs
-
PARI
See Links section.
Formula
a(2*n) = a(n).
a(n) = 2 iff n belongs to A300630.
Comments