A300630 Positive numbers k without two consecutive ones in the binary representation of 1/k.
1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 51, 56, 60, 62, 63, 64, 96, 102, 112, 120, 124, 126, 127, 128, 192, 195, 204, 224, 240, 248, 252, 254, 255, 256, 384, 390, 399, 408, 448, 451, 455, 480, 496, 504, 508, 510, 511, 512, 768, 771, 775
Offset: 1
Examples
The first terms, alongside the binary representation of 1/a(n), are: n a(n) bin(1/a(n)) with repeating digits in parentheses -- ---- ------------------------------------------------ 1 1 1.(0) 2 2 0.1(0) 3 3 0.(01) 4 4 0.01(0) 5 6 0.0(01) 6 7 0.(001) 7 8 0.001(0) 8 12 0.00(01) 9 14 0.0(001) 10 15 0.(0001) 11 16 0.0001(0) 12 24 0.000(01) 13 28 0.00(001) 14 30 0.0(0001) 15 31 0.(00001) 16 32 0.00001(0) 17 48 0.0000(01) 18 51 0.(00000101) 19 56 0.000(001) 20 60 0.00(0001)
Links
- Robert Israel, Table of n, a(n) for n = 1..629
Programs
-
Maple
filter:= proc(n) local m,d,r; m:= n/2^padic:-ordp(n,2); d:= numtheory:-order(2,m); r:=(2^d-1)/m; Bits:-Or(r,2*r)=3*r end proc: select(filter, [$1..1000]); # Robert Israel, Jun 27 2018
-
PARI
is(n) = my (f=1/max(2,n), s=Set()); while (!setsearch(s, f), if (floor(f*4)==3, return (0), s=setunion(s,Set(f)); f=frac(f*2))); return (1)
Comments