cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300664 Infinitary 3-abundant numbers: numbers n such that isigma(n) >= 3n, where isigma is the sum of infinitary divisors of n (A049417).

Original entry on oeis.org

120, 840, 1080, 1320, 1512, 1560, 1848, 1890, 1920, 2040, 2184, 2280, 2376, 2688, 2760, 2856, 3000, 3192, 3480, 3720, 4440, 4920, 5160, 5640, 5880, 6360, 7080, 7320, 7560, 8040, 8520, 8760, 9240, 9480, 9720, 9960, 10680, 10920, 11640, 11880, 12120, 12360
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2018

Keywords

Comments

Analogous to 3-abundant numbers (A023197) with isigma (A049417) instead of sigma (A000203).

Examples

			840 is in the sequence since isigma(840) = 2880 > 3 * 840.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, #]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer ? Positive] := Module[{factors = First /@ FactorInteger[n], d = Divisors[n]}, d[[Flatten[ Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][#, Last[#]]] & /@ Transpose[ Last /@ ExponentList[#, factors] & /@ d]], ?(And @@ # &), {1}]]]]]; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; Infinitary3AbundantNumberQ[k_] :=  If[properinfinitarydivisorsum[k] >= 2 k, True, False]; Select[Range[15000], Infinitary3AbundantNumberQ[#] &] (* after Ant King at A129656 *)