A300700 Triangle read by rows: T(n, n-k) = number of k-faces of the concertina n-cube.
1, 1, 2, 1, 6, 6, 1, 18, 42, 26, 1, 58, 252, 344, 150, 1, 190, 1420, 3380, 3230, 1082, 1, 614, 7770, 29200, 47130, 34452, 9366
Offset: 0
Examples
First rows of the triangle: k 0 1 2 3 4 5 6 sums = A300701 n 0 1 1 1 1 2 3 2 1 6 6 13 3 1 18 42 26 87 4 1 58 252 344 150 805 5 1 190 1420 3380 3230 1082 9303 6 1 614 7770 29200 47130 34452 9366 128533 T(3, 3-1) = T(3, 2) = 42 is the number of 1-faces (edges) of the concertina 3-cube. It has 26 vertices, 42 edges, 18 faces and 1 cell. In the reflected triangle the column number is the dimension of the counted faces: n-k 0 1 2 3 4 5 6 n 0 1 1 2 1 2 6 6 1 3 26 42 18 1 4 150 344 252 58 1 5 1082 3230 3380 1420 190 1 6 9366 34452 47130 29200 7770 614 1
Links
- Tilman Piesk, Formulas in predicate logic (Wikiversity)
- Tilman Piesk, Skeleton and solid representation of a concertina cube
- Tilman Piesk, SAGE code used to generate the sequence
Comments